Algebraic cycles on a real algebraic GM-manifold and their applications
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 141-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an algebraic cycle $Y\in A_k(X)$ on a real algebraic $\operatorname{GM}$-manifold $X$, the relationship between the homology classes $[Y(\mathbf C)]\in H_{2k}(X(\mathbf C),\mathbf Z)$ and $[Y(\mathbf R)]\in H_k(X(\mathbf R),\mathbf F_2)$ is studied. It is shown that similar relations hold for smooth cycles on a $\operatorname{GM}$-surface. The results are applied to prove congruences for the Euler characteristic of the set $X(\mathbf R)$.
@article{IM2_1994_43_1_a8,
     author = {V. A. Krasnov},
     title = {Algebraic cycles on a real algebraic {GM-manifold} and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {141--160},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a8/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Algebraic cycles on a real algebraic GM-manifold and their applications
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 141
EP  - 160
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a8/
LA  - en
ID  - IM2_1994_43_1_a8
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Algebraic cycles on a real algebraic GM-manifold and their applications
%J Izvestiya. Mathematics 
%D 1994
%P 141-160
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a8/
%G en
%F IM2_1994_43_1_a8
V. A. Krasnov. Algebraic cycles on a real algebraic GM-manifold and their applications. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 141-160. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a8/

[1] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746 | MR

[2] Kharlamov V. M., “Dopolnitelnye sravneniya dlya eilerovoi kharakteristiki chetnomernykh veschestvennykh algebraicheskikh mnogoobrazii”, Funkts. analiz i ego prilozh., 9:2 (1975), 51–60 | MR | Zbl

[3] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[4] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[5] Krasnov V. A., “O klassakh gomologii, opredelennykh veschestvennymi tochkami veschestvennogo algebraicheskogo mnogoobraziya”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 282–302 | MR | Zbl

[6] Kharlamov V. M., “Novye sravneniya dlya eilerovoi kharakteristiki veschestvennykh algebraicheskikh mnogoobrazii”, Funkts. analiz i ego prilozh., 7:2 (1973), 74–78 | MR | Zbl

[7] Rokhlin V. A., “Sravneniya po modulyu 16 v shestnadtsatoi probleme Gilberta”, Funkts. analiz i ego prilozh., 6:4 (1972), 58–64 ; 7:2 (1973), 91–92 | MR | Zbl | MR | Zbl

[8] Arnold V. I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funkts. analiz i ego prilozh., 5:3 (1971), 1–9 | MR

[9] Maren A., “Neskolko zamechanii o veschestvennykh ploskikh algebraicheskikh krivykh”, V poiske utrachennoi topologii, Mir, M., 1989, 164–172 | MR

[10] Nikulin V. V., “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 111–177 | MR | Zbl