Algebraic cycles on a real algebraic GM-manifold and their applications
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 141-160

Voir la notice de l'article provenant de la source Math-Net.Ru

For an algebraic cycle $Y\in A_k(X)$ on a real algebraic $\operatorname{GM}$-manifold $X$, the relationship between the homology classes $[Y(\mathbf C)]\in H_{2k}(X(\mathbf C),\mathbf Z)$ and $[Y(\mathbf R)]\in H_k(X(\mathbf R),\mathbf F_2)$ is studied. It is shown that similar relations hold for smooth cycles on a $\operatorname{GM}$-surface. The results are applied to prove congruences for the Euler characteristic of the set $X(\mathbf R)$.
@article{IM2_1994_43_1_a8,
     author = {V. A. Krasnov},
     title = {Algebraic cycles on a real algebraic {GM-manifold} and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {141--160},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a8/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Algebraic cycles on a real algebraic GM-manifold and their applications
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 141
EP  - 160
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a8/
LA  - en
ID  - IM2_1994_43_1_a8
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Algebraic cycles on a real algebraic GM-manifold and their applications
%J Izvestiya. Mathematics 
%D 1994
%P 141-160
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a8/
%G en
%F IM2_1994_43_1_a8
V. A. Krasnov. Algebraic cycles on a real algebraic GM-manifold and their applications. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 141-160. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a8/