Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1994_43_1_a5, author = {V. A. Klyachin}, title = {Maximal tubular surfaces of arbitrary codimension in the {Minkowski} space}, journal = {Izvestiya. Mathematics }, pages = {105--118}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {1994}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/} }
V. A. Klyachin. Maximal tubular surfaces of arbitrary codimension in the Minkowski space. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 105-118. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/
[1] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985, 400 pp. | MR
[2] Ecker K., “Area maximizing hypersurfaces in Minkowski space having an isolated singularity”, Manuscr. Math., 56 (1986), 375–397 | DOI | MR | Zbl
[3] Bartnik R., Simon L., “Spacelike hypersurfaces with prescribed boundary values and mean curvature”, Comm. Math. Phys., 87:1 (1982), 131–152 | DOI | MR | Zbl
[4] Cheng S., Yau S.-T., “Maximal spacelike hypersurfaces in the Lorentz–Minkowski spaces”, Ann. of Math., 104:2 (1976), 407–419 | DOI | MR | Zbl
[5] Vedenyapin A. D., Miklyukov V. M., “Vneshnie razmery trubchatykh minimalnykh giperpoverkhnostei”, Matem. sb., 131 (1986), 240–250 | MR | Zbl
[6] Klyachin V. A., Miklyukov V. M., “Maksimalnye giperpoverkhnosti trubchatogo tipa v prostranstve Minkovskogo”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 206–217 | MR
[7] Miklyukov V. M., “O nekotorykh svoistvakh trubchatykh v tselom minimalnykh poverkhnostei v $\mathbf{R}^n$”, DAN SSSR, 247:3 (1979), 549–552 | MR | Zbl
[8] Miklyukov V. M., Tkachev V. G., “Nekotorye svoistva trubchatykh minimalnykh poverkhnostei proizvolnoi korazmernosti”, Matem. sb., 180:9 (1989), 1278–1295 | MR | Zbl
[9] Miklyukov V. M., “O konformnom tipe kontsov maksimalnykh prostranstvenno-podobnykh poverkhnostei s osobennostyami”, Aktualnye voprosy kompleksnogo analiza, Tez. dokl. shkoly-seminara, Tashkent, 1989 | Zbl
[10] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 2, Nauka, M., 1981, 414 pp.
[11] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu-funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983, 284 pp. | MR
[12] Burago Yu. D., Zalgaller V. L., Geometricheskie neravenstva, Nauka, L., 1980, 288 pp. | MR | Zbl
[13] Suvorov G. D., Obobschennyi “printsip dliny i ploschadi” v teorii otobrazhenii, Nauk. dumka, Kiev, 1985, 280 pp. | MR
[14] Vladimirov B. C., Uravneniya matematicheskoi fiziki, 5-e izd., dop., Nauka, M., 1988, 512 pp. | MR