Maximal tubular surfaces of arbitrary codimension in the Minkowski space
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 105-118

Voir la notice de l'article provenant de la source Math-Net.Ru

A surface, given by a $C^2$-immersion $u\colon M\to R_1^{n+1}$, is said to be tubular if the cross-sections $u(M)\cap\Pi$ are compact for all hyperplanes $\Pi$ that are orthogonal to the time axis. Space-like surfaces with zero mean curvature vector are maximal. The extrinsic properties of maximal tubular surfaces are studied in this paper. In particular, it is proved that if such a surface, of dimension $p\geqslant 3$, has a singularity, then it has finite spread along the time axis.
@article{IM2_1994_43_1_a5,
     author = {V. A. Klyachin},
     title = {Maximal tubular surfaces of arbitrary codimension in the {Minkowski} space},
     journal = {Izvestiya. Mathematics },
     pages = {105--118},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - Maximal tubular surfaces of arbitrary codimension in the Minkowski space
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 105
EP  - 118
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/
LA  - en
ID  - IM2_1994_43_1_a5
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T Maximal tubular surfaces of arbitrary codimension in the Minkowski space
%J Izvestiya. Mathematics 
%D 1994
%P 105-118
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/
%G en
%F IM2_1994_43_1_a5
V. A. Klyachin. Maximal tubular surfaces of arbitrary codimension in the Minkowski space. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 105-118. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/