Maximal tubular surfaces of arbitrary codimension in the Minkowski space
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 105-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

A surface, given by a $C^2$-immersion $u\colon M\to R_1^{n+1}$, is said to be tubular if the cross-sections $u(M)\cap\Pi$ are compact for all hyperplanes $\Pi$ that are orthogonal to the time axis. Space-like surfaces with zero mean curvature vector are maximal. The extrinsic properties of maximal tubular surfaces are studied in this paper. In particular, it is proved that if such a surface, of dimension $p\geqslant 3$, has a singularity, then it has finite spread along the time axis.
@article{IM2_1994_43_1_a5,
     author = {V. A. Klyachin},
     title = {Maximal tubular surfaces of arbitrary codimension in the {Minkowski} space},
     journal = {Izvestiya. Mathematics },
     pages = {105--118},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - Maximal tubular surfaces of arbitrary codimension in the Minkowski space
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 105
EP  - 118
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/
LA  - en
ID  - IM2_1994_43_1_a5
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T Maximal tubular surfaces of arbitrary codimension in the Minkowski space
%J Izvestiya. Mathematics 
%D 1994
%P 105-118
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/
%G en
%F IM2_1994_43_1_a5
V. A. Klyachin. Maximal tubular surfaces of arbitrary codimension in the Minkowski space. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 105-118. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/

[1] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985, 400 pp. | MR

[2] Ecker K., “Area maximizing hypersurfaces in Minkowski space having an isolated singularity”, Manuscr. Math., 56 (1986), 375–397 | DOI | MR | Zbl

[3] Bartnik R., Simon L., “Spacelike hypersurfaces with prescribed boundary values and mean curvature”, Comm. Math. Phys., 87:1 (1982), 131–152 | DOI | MR | Zbl

[4] Cheng S., Yau S.-T., “Maximal spacelike hypersurfaces in the Lorentz–Minkowski spaces”, Ann. of Math., 104:2 (1976), 407–419 | DOI | MR | Zbl

[5] Vedenyapin A. D., Miklyukov V. M., “Vneshnie razmery trubchatykh minimalnykh giperpoverkhnostei”, Matem. sb., 131 (1986), 240–250 | MR | Zbl

[6] Klyachin V. A., Miklyukov V. M., “Maksimalnye giperpoverkhnosti trubchatogo tipa v prostranstve Minkovskogo”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 206–217 | MR

[7] Miklyukov V. M., “O nekotorykh svoistvakh trubchatykh v tselom minimalnykh poverkhnostei v $\mathbf{R}^n$”, DAN SSSR, 247:3 (1979), 549–552 | MR | Zbl

[8] Miklyukov V. M., Tkachev V. G., “Nekotorye svoistva trubchatykh minimalnykh poverkhnostei proizvolnoi korazmernosti”, Matem. sb., 180:9 (1989), 1278–1295 | MR | Zbl

[9] Miklyukov V. M., “O konformnom tipe kontsov maksimalnykh prostranstvenno-podobnykh poverkhnostei s osobennostyami”, Aktualnye voprosy kompleksnogo analiza, Tez. dokl. shkoly-seminara, Tashkent, 1989 | Zbl

[10] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 2, Nauka, M., 1981, 414 pp.

[11] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu-funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983, 284 pp. | MR

[12] Burago Yu. D., Zalgaller V. L., Geometricheskie neravenstva, Nauka, L., 1980, 288 pp. | MR | Zbl

[13] Suvorov G. D., Obobschennyi “printsip dliny i ploschadi” v teorii otobrazhenii, Nauk. dumka, Kiev, 1985, 280 pp. | MR

[14] Vladimirov B. C., Uravneniya matematicheskoi fiziki, 5-e izd., dop., Nauka, M., 1988, 512 pp. | MR