Maximal tubular surfaces of arbitrary codimension in the Minkowski space
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 105-118
Voir la notice de l'article provenant de la source Math-Net.Ru
A surface, given by a $C^2$-immersion $u\colon M\to R_1^{n+1}$, is said to be tubular if the cross-sections $u(M)\cap\Pi$ are compact for all hyperplanes $\Pi$ that are orthogonal to the time axis. Space-like surfaces with zero mean curvature vector are maximal. The extrinsic properties of maximal tubular surfaces are studied in this paper. In particular, it is proved that if such a surface, of dimension $p\geqslant 3$, has a singularity, then it has finite spread along the time axis.
@article{IM2_1994_43_1_a5,
author = {V. A. Klyachin},
title = {Maximal tubular surfaces of arbitrary codimension in the {Minkowski} space},
journal = {Izvestiya. Mathematics },
pages = {105--118},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/}
}
V. A. Klyachin. Maximal tubular surfaces of arbitrary codimension in the Minkowski space. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 105-118. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a5/