Normal domains and removable singularities
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 83-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution is presented for the Koebe problem of characterizing compacta that generate minimal domains. This, in turn, makes it possible to describe the zero-sets for the class of regular functions with bounded Dirichlet integrals, and for its generalization in the Rodin–Sario–Hedberg sense as removable sets in the corresponding modulus problem.
@article{IM2_1994_43_1_a4,
     author = {V. A. Shlyk},
     title = {Normal domains and removable singularities},
     journal = {Izvestiya. Mathematics },
     pages = {83--104},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a4/}
}
TY  - JOUR
AU  - V. A. Shlyk
TI  - Normal domains and removable singularities
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 83
EP  - 104
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a4/
LA  - en
ID  - IM2_1994_43_1_a4
ER  - 
%0 Journal Article
%A V. A. Shlyk
%T Normal domains and removable singularities
%J Izvestiya. Mathematics 
%D 1994
%P 83-104
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a4/
%G en
%F IM2_1994_43_1_a4
V. A. Shlyk. Normal domains and removable singularities. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 83-104. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a4/

[1] Dzhenkins D., Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962

[2] Tamrazov P. M., “Konformno-invariantnye moduli i krugovaya simmetrizatsiya”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 5, Nauk. dumka, Kiev, 1974, 127–146 | MR

[3] Sario L., Oikawa K., Capacity functions, Springer, Berlin, 1969 | MR | Zbl

[4] Shlyk V. A., “Stroenie kompaktov, porozhdayuschikh normalnye oblasti i ustranimye osobennosti dlya prostranstva $L_p^1(D)$”, Matem. sb., 181:11 (1990), 1558–1572 | MR

[5] Ahlfors L., Beurling A., “Conformal invariants and functions-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[6] Hedberg L. I., “Removable singularities and condenser capacities”, Arkiv Matem., 12:2 (1979), 181–201 | DOI | MR

[7] Gonchar A. A., “O priblizhenii nepreryvnykh funktsii garmonicheskimi”, DAN SSSR, 154:3 (1969), 503–507

[8] Vitushkin A. G., “Analiticheskaya emkost mnozhestva v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[9] Kuratovskii K., Topologiya, V 2-kh t., t. 2, Mir, M., 1969 | MR

[10] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR

[11] Hesse. J., “A $p$-extremal length and $p$-capacity equality”, Arkiv Matem., 13:1 (1975), 131–144 | DOI | MR | Zbl

[12] Yamamoto H., “On a $p$-capacity of a condenser and $KD^p$-null-sets”, Hiroshima Math. J., 8:1 (1978), 123–150 | MR | Zbl

[13] Fuglede B., “Extremal length and functional completion”, Acta Math., 90 (1957), 171–219 | DOI | MR

[14] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR

[15] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[16] Shlyk V. A., “Emkost kondensatora i modul semeistva razdelyayuschikh poverkhnostei”, Zap. nauch. seminarov LOMI, 185, 1990, 168–182 | MR

[17] Sychev A. V., Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983

[18] Ohtsuka M., “Limiting property of extremal length”, Lect. Notes in Math., 1039, 1983, 467 | MR | Zbl

[19] Strebel K., “Die extremale Distanz zweier Enden einer Riemannschen Flache”, Lect. Notes in Math., 179, 1955, 1–21 | MR

[20] Marden A., Rodin B., “Extremal and conjugate extremal distance and open Riemann surfaces with applications to circular radial slit mappings”, Acta Math., 115 (1966), 237–269 | DOI | MR | Zbl

[21] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974 | MR

[22] Hedberg L. I., “Spectral synthesis in Sobolev spaces and uniqueness of solutions to Ditechlet problem”, Acta Math., 147 (1981), 237–264 | DOI | MR | Zbl

[23] Mazya V. G., “Klassy oblastei, mer i emkostei v teorii prostranstv differentsiruemykh funktsii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 26, VINITI, M., 1988, 159–228

[24] Saks S., Teoriya integrala, IL, M., 1949

[25] Tamrazov P. M., Metod ekstremalnoi metriki i konformnoe otobrazhenie, Dis. $\dots$ kand. fiz.-matem. nauk, KPI, Kiev, 1963

[26] Rodin B., Sario L., Principal functions, Van Nostrand, Princeton, 1968 | MR | Zbl