Normal domains and removable singularities
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 83-104

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution is presented for the Koebe problem of characterizing compacta that generate minimal domains. This, in turn, makes it possible to describe the zero-sets for the class of regular functions with bounded Dirichlet integrals, and for its generalization in the Rodin–Sario–Hedberg sense as removable sets in the corresponding modulus problem.
@article{IM2_1994_43_1_a4,
     author = {V. A. Shlyk},
     title = {Normal domains and removable singularities},
     journal = {Izvestiya. Mathematics },
     pages = {83--104},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a4/}
}
TY  - JOUR
AU  - V. A. Shlyk
TI  - Normal domains and removable singularities
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 83
EP  - 104
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a4/
LA  - en
ID  - IM2_1994_43_1_a4
ER  - 
%0 Journal Article
%A V. A. Shlyk
%T Normal domains and removable singularities
%J Izvestiya. Mathematics 
%D 1994
%P 83-104
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a4/
%G en
%F IM2_1994_43_1_a4
V. A. Shlyk. Normal domains and removable singularities. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 83-104. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a4/