Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1994_43_1_a1, author = {A. V. Romanov}, title = {Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations}, journal = {Izvestiya. Mathematics }, pages = {31--47}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {1994}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/} }
A. V. Romanov. Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 31-47. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/
[1] Smith R. A., “Poincare index theorem concerning periodic orbits of differential equations”, Proc. London Math. Soc., 48:2 (1984), 341–362 | DOI | MR | Zbl
[2] Mane R., “Reduction of semilinear parabolic equations to finite dimensional $C^1$-flows”, Lect. Notes in Math., 597, 1977, 361–378 | MR | Zbl
[3] Mora X., “Finite dimensional attracting manifolds in reaction-diffusion equations”, Contemp. Math., 17 (1983), 353–360 | MR | Zbl
[4] Romanov A. V., “Asimptoticheskaya konechnomernost polulineinykh parabolicheskikh uravnenii”, Dokl. AN SSSR, 307:3 (1989), 548–551 | MR
[5] Romanov A. V., “O razmernosti tsentralnogo mnogoobraziya dlya polulineinykh parabolicheskikh uravnenii”, Ukr. matem. zhurn., 42:10 (1990), 1356–1362 | MR | Zbl
[6] Romanov A. V., “Usloviya asimptoticheskoi $k$-mernosti polulineinykh parabolicheskikh uravnenii”, Uspekhi matem. nauk, 46:1 (199), 213–214 | MR | Zbl
[7] Constantin P., Foias C., Nicolaenko B., Temam R., “Nouveaux resultats sur les variates inertielles pour les equations differentialles dissipatives”, C.R. Acad. Sc. Paris Ser. 1., 302:10 (1986), 375–378 | MR | Zbl
[8] Constantin P., Foias C., Nicolaenko B., Temam R., Integral manifolds and inertial manifolds for dissipative partial differential equations, Springer, N.Y., 1989 | MR
[9] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl
[10] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR
[11] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR
[12] Vishnevskii M. P., “Integralnye mnozhestva nelineinykh parabolicheskikh sistem”, Dinamika sploshnoi sredy, 1982, no. 54, 74–84 | MR
[13] Vishnevskii M. P., “Invariantnye mnozhestva nelineinykh parabolicheskikh sistem”, Nekotorye prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, IM SO AN SSSR, Novosibirsk, 1986, 32–56
[14] Foias C., Sell G. R., Temam R., “Inertial manifolds for nonlinear evolutionary equations”, J. Differ. Equat., 73:2 (1988), 309–353 | DOI | MR | Zbl
[15] Mallet-Paret J., Sell G. R., “Inertial manifolds for reaction-diffusion equations in higher spase dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR
[16] Mallet-Paret J., “Negatively invariant sets of compact maps and an extension of a theorem of Cartwright”, J. Differ. Equat., 22 (1976), 331–348 | DOI | MR | Zbl
[17] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Springer, N.Y., 1988 | MR | Zbl
[18] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, Uspekhi matem. nauk, 42:6 (1987), 25–60 | MR | Zbl
[19] Mora X., “Semilinear parabolic problems define semiflows on $C^k$ spaces”, Trans. Amer. Math. Soc., 278:1 (1983), 21–55 | DOI | MR | Zbl
[20] Chuex K. N., Conley C. C., Smaller J. A., “Positively invariant regions for systems of nonlinear diffusion equations”, Indiana Univ. Math. J., 26:2 (1977), 373–392 | DOI | MR
[21] Luskin M., Sell G. R., “Approximation theories for inertial manifolds”, Attractors, inertial manifolds and their approximation (Marseille-Luminy, 1987), RAIRO Modél. Math. Anal. Numér., 23:3 (1989), 445–461 | MR | Zbl
[22] Constantin P., Foias C., Nicolaenko B., Temam R., “Spectral barriers and inertial manifolds for dissipative partial differential equations”, J. Dyn. and Differ. Equat., 1:1 (1989), 45–7 | DOI | MR
[23] Miklavčič M., “A sharp condition for existence of an inertial manifolds”, J. Dyn. and Differ. Equat., 3:3 (1991), 437–456 | DOI | MR | Zbl