Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 31-47

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are obtained for the existence of a $k$-dimensional invariant manifold that attracts as $t\to\infty$ all solutions $u(t)$ of the evolution equation $\dot u=-Au+F(u)$ in a Hilbert space, where $A$ is a linear selfadjoint operator, semibounded from below, with compact resolvent, and $F$ is a uniformly Lipschitz (in suitable norms) nonlinearity; these conditions sharpen previously known conditions and cannot be improved.
@article{IM2_1994_43_1_a1,
     author = {A. V. Romanov},
     title = {Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations},
     journal = {Izvestiya. Mathematics },
     pages = {31--47},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 31
EP  - 47
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/
LA  - en
ID  - IM2_1994_43_1_a1
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations
%J Izvestiya. Mathematics 
%D 1994
%P 31-47
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/
%G en
%F IM2_1994_43_1_a1
A. V. Romanov. Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 31-47. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/