Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 31-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are obtained for the existence of a $k$-dimensional invariant manifold that attracts as $t\to\infty$ all solutions $u(t)$ of the evolution equation $\dot u=-Au+F(u)$ in a Hilbert space, where $A$ is a linear selfadjoint operator, semibounded from below, with compact resolvent, and $F$ is a uniformly Lipschitz (in suitable norms) nonlinearity; these conditions sharpen previously known conditions and cannot be improved.
@article{IM2_1994_43_1_a1,
     author = {A. V. Romanov},
     title = {Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations},
     journal = {Izvestiya. Mathematics },
     pages = {31--47},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 31
EP  - 47
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/
LA  - en
ID  - IM2_1994_43_1_a1
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations
%J Izvestiya. Mathematics 
%D 1994
%P 31-47
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/
%G en
%F IM2_1994_43_1_a1
A. V. Romanov. Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 31-47. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a1/

[1] Smith R. A., “Poincare index theorem concerning periodic orbits of differential equations”, Proc. London Math. Soc., 48:2 (1984), 341–362 | DOI | MR | Zbl

[2] Mane R., “Reduction of semilinear parabolic equations to finite dimensional $C^1$-flows”, Lect. Notes in Math., 597, 1977, 361–378 | MR | Zbl

[3] Mora X., “Finite dimensional attracting manifolds in reaction-diffusion equations”, Contemp. Math., 17 (1983), 353–360 | MR | Zbl

[4] Romanov A. V., “Asimptoticheskaya konechnomernost polulineinykh parabolicheskikh uravnenii”, Dokl. AN SSSR, 307:3 (1989), 548–551 | MR

[5] Romanov A. V., “O razmernosti tsentralnogo mnogoobraziya dlya polulineinykh parabolicheskikh uravnenii”, Ukr. matem. zhurn., 42:10 (1990), 1356–1362 | MR | Zbl

[6] Romanov A. V., “Usloviya asimptoticheskoi $k$-mernosti polulineinykh parabolicheskikh uravnenii”, Uspekhi matem. nauk, 46:1 (199), 213–214 | MR | Zbl

[7] Constantin P., Foias C., Nicolaenko B., Temam R., “Nouveaux resultats sur les variates inertielles pour les equations differentialles dissipatives”, C.R. Acad. Sc. Paris Ser. 1., 302:10 (1986), 375–378 | MR | Zbl

[8] Constantin P., Foias C., Nicolaenko B., Temam R., Integral manifolds and inertial manifolds for dissipative partial differential equations, Springer, N.Y., 1989 | MR

[9] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl

[10] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR

[11] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[12] Vishnevskii M. P., “Integralnye mnozhestva nelineinykh parabolicheskikh sistem”, Dinamika sploshnoi sredy, 1982, no. 54, 74–84 | MR

[13] Vishnevskii M. P., “Invariantnye mnozhestva nelineinykh parabolicheskikh sistem”, Nekotorye prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, IM SO AN SSSR, Novosibirsk, 1986, 32–56

[14] Foias C., Sell G. R., Temam R., “Inertial manifolds for nonlinear evolutionary equations”, J. Differ. Equat., 73:2 (1988), 309–353 | DOI | MR | Zbl

[15] Mallet-Paret J., Sell G. R., “Inertial manifolds for reaction-diffusion equations in higher spase dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR

[16] Mallet-Paret J., “Negatively invariant sets of compact maps and an extension of a theorem of Cartwright”, J. Differ. Equat., 22 (1976), 331–348 | DOI | MR | Zbl

[17] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Springer, N.Y., 1988 | MR | Zbl

[18] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, Uspekhi matem. nauk, 42:6 (1987), 25–60 | MR | Zbl

[19] Mora X., “Semilinear parabolic problems define semiflows on $C^k$ spaces”, Trans. Amer. Math. Soc., 278:1 (1983), 21–55 | DOI | MR | Zbl

[20] Chuex K. N., Conley C. C., Smaller J. A., “Positively invariant regions for systems of nonlinear diffusion equations”, Indiana Univ. Math. J., 26:2 (1977), 373–392 | DOI | MR

[21] Luskin M., Sell G. R., “Approximation theories for inertial manifolds”, Attractors, inertial manifolds and their approximation (Marseille-Luminy, 1987), RAIRO Modél. Math. Anal. Numér., 23:3 (1989), 445–461 | MR | Zbl

[22] Constantin P., Foias C., Nicolaenko B., Temam R., “Spectral barriers and inertial manifolds for dissipative partial differential equations”, J. Dyn. and Differ. Equat., 1:1 (1989), 45–7 | DOI | MR

[23] Miklavčič M., “A sharp condition for existence of an inertial manifolds”, J. Dyn. and Differ. Equat., 3:3 (1991), 437–456 | DOI | MR | Zbl