Vector-valued duality for modules over Banach algebras
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 1-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Pairs of topological modules $\mathcal X$, $\mathcal Y$ over algebras $\mathcal A$, $\mathcal B$ are considered that are in duality, with values in an ($\mathcal A$, $\mathcal B$)-bimodule $\mathcal Z$. An important example: if an arbitrary $\mathcal A$-module $\mathcal Z$ is regarded as an ($\mathcal A$, $\mathcal B$)-bimodule, where $\mathcal B=\operatorname{Hom}_\mathcal A(\mathcal Z,\mathcal Z)$, then for any $\mathcal A$-module $\mathcal X$ the pair $\mathcal X$, $\operatorname{Hom}_\mathcal A(\mathcal X,\mathcal Z)$ is in a natural $\mathcal Z$-duality. Conditions on the ($\mathcal A$, $\mathcal B$)-bimodule $\mathcal Z$ are found under which the bipolar theorem and certain other results in convex analysis carry over to $\mathcal Z$-valued duality. In several cases this enables one to describe the structure of the closed submodules and (in terms of graphs) the closed homomorphisms. Among the applications are results on commutation systems, unbounded derivations, left Hilbert algebras, spaces with an indefinite metric, and multipliers of $C^*$-algebras.
@article{IM2_1994_43_1_a0,
     author = {A. I. Loginov and V. S. Shulman},
     title = {Vector-valued duality for modules over {Banach} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1--29},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a0/}
}
TY  - JOUR
AU  - A. I. Loginov
AU  - V. S. Shulman
TI  - Vector-valued duality for modules over Banach algebras
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 1
EP  - 29
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a0/
LA  - en
ID  - IM2_1994_43_1_a0
ER  - 
%0 Journal Article
%A A. I. Loginov
%A V. S. Shulman
%T Vector-valued duality for modules over Banach algebras
%J Izvestiya. Mathematics 
%D 1994
%P 1-29
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a0/
%G en
%F IM2_1994_43_1_a0
A. I. Loginov; V. S. Shulman. Vector-valued duality for modules over Banach algebras. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 1-29. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a0/

[1] Atzmon A., “Non-finitely-generated closed ideals in group algebras”, J. Funct. Anal., 11 (1972), 231–249 | DOI | MR | Zbl

[2] Burnham J. T., “Closed ideals in subalgebras of Banach algebras”, Proc. Amer. Math. Soc., 32 (1972), 551–555 | DOI | MR | Zbl

[3] Combes F., “Poids sur une $C^*$-algebre”, J. Math. Pure et Appl., 47 (1968), 57–100, 9e serie | MR | Zbl

[4] Brickman. L., Fillmore P., “The invariant subspace lattice of linear transformation”, Canad. J. Math., 19 (1967), 810–822 | MR | Zbl

[5] van Daele A., “A framework to study commutation problems”, Bull. Soc. Math. France, 106 (1978), 289–309 | MR | Zbl

[6] Malviya B., Tomiuk B., “Multiplier operators on $B^*$-algebras”, Proc. Amer. Math. Soc., 31:2 (1972), 505–510 | DOI | MR | Zbl

[7] Kaijser S., “On Banach modules, I”, Math. Proc. Camb. Phil. Soc., 1981, no. 90, 423–444 | DOI | MR | Zbl

[8] Paschke W., “Inner product modules over $B^*$-algebras”, Trans. Amer. Math. Soc., 1973, no. 182, 443–468 | DOI | MR | Zbl

[9] Fichtenholz G., Kantorovitch L., “Sur les operations lineaires dans l'espaees des fonctions bornees”, Stud. Math., 5 (1934), 69–98 | Zbl

[10] Sazonov V. V., “Zamechaniya o kharakteristicheskikh funktsionalakh”, Teor. ver. i ee prim., 3 (1958), 201–205 | MR | Zbl

[11] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[12] Takesaki M., “Teoriya Tomity modulyarnykh gilbertovykh algebr i ee prilozheniya”, Matematika. Sb. perevodov, 18:3 (1974), 84–120; 4, 34–63 | Zbl

[13] Shulman B. C., “Banakhovy simmetrichnye algebry operatorov v prostranstve $\Pi_1$”, Matem. sb., 89(131):2 (1972), 264–279

[14] Shulman B. C., “O predstavleniyakh $C^*$-algebr v prostranstvakh s indefinitnoi metrikoi”, Matem. zametki, 22:4 (1977), 583–592 | MR | Zbl

[15] Shulman B. C., “O modulyakh nad operatornymi algebrami”, Funkts. analiz i ego pril., 17:2 (1983), 94–95 | MR

[16] Kadets M., Mityagin B. S., “Dopolnyaemye podprostranstva v banakhovykh prostranstvakh”, Uspekhi matem. nauk, 28:6(174) (1973), 77–94 | MR | Zbl

[17] Haagerup V., “A density theorem for left Hilbert algebras”, Algebres d'Operateurs, Lecture Notes in Mathematics, 725, Springer-Verlag, 1979 | MR

[18] Larsen R., An introduction to the theory of multipliers, Springer-Verlag, Berlin, 1971 | MR | Zbl

[19] Akeman C. Pedersen G., “Complications of semi-continuity in $C^*$-algebras theory”, Duke Math. J., 40 (1973), 785–795 | DOI | MR | Zbl

[20] Pincket J., “Gilbert modules over an arbitrary $C^*$-algebra”, Bull. Soc. Math. Belg., 38:2 (1986), 176–186 | MR | Zbl

[21] Takesaki M., Theory of Operator Algebras, I, Springer-Verlag, 1979 | MR

[22] Junek H., Locally convex spaces and operator ideals, Teubner, Leipzig, 1983, Text 56 | MR | Zbl