Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1994_42_3_a7, author = {S. M. Ageev}, title = {Topological proofs of {Keller's} theorem and an equivariant version of it}, journal = {Izvestiya. Mathematics }, pages = {621--629}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {1994}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a7/} }
S. M. Ageev. Topological proofs of Keller's theorem and an equivariant version of it. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 621-629. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a7/
[1] Keller O. H., “Die Homoimorpfis der Kompakten konvehen Mengen in Hilbertschen Raum”, Math. Ann., 105 (1931), 748–758 | DOI | MR | Zbl
[2] Bessaga C., Pelczynski A., Selected topics in infinite-dimensional topology, Warszawa, 1975 | MR | Zbl
[3] Dobrowolski T., Torunczyk H., “On metric linear spaces homeomorfic to $l_2$ and compact convex sets homeomorfic to $Q$”, Bull. Acad. Polon. Sci., 27 (1979), 883–887 | MR | Zbl
[4] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl
[5] Barut A., Ronchka P., Teoriya predstavlenii grupp i ee prilozhenii, t. 1, Mir, M., 1980 | Zbl
[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR
[7] Ageev S. M., “Klassifikatsiya $G$-prostranstv”, Izv. RAN. Ser. matem., 56:6 (1992), 1345–1357 | MR | Zbl
[8] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR
[9] Rurk K., Sanderson B., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR