Topological proofs of Keller's theorem and an equivariant version of it
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 621-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

The known proofs of Keller's theorem that any infinite-dimensional compact convex set in Hilbert space is homeomorphic to the Hilbert cube are analytic. Here a topological proof of this theorem is given. A new approach to the old theorem leads to a proof of an equivariant version of Keller's theorem.
@article{IM2_1994_42_3_a7,
     author = {S. M. Ageev},
     title = {Topological proofs of {Keller's} theorem and an equivariant version of it},
     journal = {Izvestiya. Mathematics },
     pages = {621--629},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a7/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Topological proofs of Keller's theorem and an equivariant version of it
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 621
EP  - 629
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a7/
LA  - en
ID  - IM2_1994_42_3_a7
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Topological proofs of Keller's theorem and an equivariant version of it
%J Izvestiya. Mathematics 
%D 1994
%P 621-629
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a7/
%G en
%F IM2_1994_42_3_a7
S. M. Ageev. Topological proofs of Keller's theorem and an equivariant version of it. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 621-629. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a7/

[1] Keller O. H., “Die Homoimorpfis der Kompakten konvehen Mengen in Hilbertschen Raum”, Math. Ann., 105 (1931), 748–758 | DOI | MR | Zbl

[2] Bessaga C., Pelczynski A., Selected topics in infinite-dimensional topology, Warszawa, 1975 | MR | Zbl

[3] Dobrowolski T., Torunczyk H., “On metric linear spaces homeomorfic to $l_2$ and compact convex sets homeomorfic to $Q$”, Bull. Acad. Polon. Sci., 27 (1979), 883–887 | MR | Zbl

[4] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[5] Barut A., Ronchka P., Teoriya predstavlenii grupp i ee prilozhenii, t. 1, Mir, M., 1980 | Zbl

[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[7] Ageev S. M., “Klassifikatsiya $G$-prostranstv”, Izv. RAN. Ser. matem., 56:6 (1992), 1345–1357 | MR | Zbl

[8] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[9] Rurk K., Sanderson B., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR