On the possibility of performing any multi-prover interactive proof in constantly many rounds
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 561-586
Voir la notice de l'article provenant de la source Math-Net.Ru
In 1990 Babai, Fortnow, and Lund built a two-prover interactive proof system for an $\operatorname{NEXP}$-complete set, thereby proving that the complexity classes $\operatorname{MIP}$ and $\operatorname{NEXP}$ coincide. In the present paper for an arbitrary $\operatorname{NEXP}$-set a two-prover interactive protocol is built with permissible error probability $1/3$, the number of rounds being bounded by a universal constant , i.e., it is proved that for some constant $c$ the classes $\operatorname{MIP}$ and $\operatorname{IP}(2,c)$ coincide.
@article{IM2_1994_42_3_a3,
author = {O. V. Verbitskii},
title = {On the possibility of performing any multi-prover interactive proof in constantly many rounds},
journal = {Izvestiya. Mathematics },
pages = {561--586},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a3/}
}
TY - JOUR AU - O. V. Verbitskii TI - On the possibility of performing any multi-prover interactive proof in constantly many rounds JO - Izvestiya. Mathematics PY - 1994 SP - 561 EP - 586 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a3/ LA - en ID - IM2_1994_42_3_a3 ER -
O. V. Verbitskii. On the possibility of performing any multi-prover interactive proof in constantly many rounds. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 561-586. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a3/