On the possibility of performing any multi-prover interactive proof in constantly many rounds
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 561-586

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1990 Babai, Fortnow, and Lund built a two-prover interactive proof system for an $\operatorname{NEXP}$-complete set, thereby proving that the complexity classes $\operatorname{MIP}$ and $\operatorname{NEXP}$ coincide. In the present paper for an arbitrary $\operatorname{NEXP}$-set a two-prover interactive protocol is built with permissible error probability $1/3$, the number of rounds being bounded by a universal constant , i.e., it is proved that for some constant $c$ the classes $\operatorname{MIP}$ and $\operatorname{IP}(2,c)$ coincide.
@article{IM2_1994_42_3_a3,
     author = {O. V. Verbitskii},
     title = {On the possibility of performing any multi-prover interactive proof in constantly many rounds},
     journal = {Izvestiya. Mathematics },
     pages = {561--586},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a3/}
}
TY  - JOUR
AU  - O. V. Verbitskii
TI  - On the possibility of performing any multi-prover interactive proof in constantly many rounds
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 561
EP  - 586
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a3/
LA  - en
ID  - IM2_1994_42_3_a3
ER  - 
%0 Journal Article
%A O. V. Verbitskii
%T On the possibility of performing any multi-prover interactive proof in constantly many rounds
%J Izvestiya. Mathematics 
%D 1994
%P 561-586
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a3/
%G en
%F IM2_1994_42_3_a3
O. V. Verbitskii. On the possibility of performing any multi-prover interactive proof in constantly many rounds. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 561-586. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a3/