The theorem on the least majorant and its applications. II.~Entire and meromorphic functions of finite order
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 479-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sharp estimates of the circular indicator and type are obtained for nonzero entire functions of minimal growth that are divisible by an entire function $F$ when the growth of the characteristics of the zero set of $F$ is known, and the problem of representing a meromorphic function $f$ on $\mathbf C^n$ as a quotient $f=g/h$ is solved with best possible estimates on the circular indicators and the type of the entire functions $g$ and $h$.
@article{IM2_1994_42_3_a1,
     author = {B. N. Khabibullin},
     title = {The theorem on the least majorant and its applications. {II.~Entire} and meromorphic functions of finite order},
     journal = {Izvestiya. Mathematics },
     pages = {479--500},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a1/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - The theorem on the least majorant and its applications. II.~Entire and meromorphic functions of finite order
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 479
EP  - 500
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a1/
LA  - en
ID  - IM2_1994_42_3_a1
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T The theorem on the least majorant and its applications. II.~Entire and meromorphic functions of finite order
%J Izvestiya. Mathematics 
%D 1994
%P 479-500
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a1/
%G en
%F IM2_1994_42_3_a1
B. N. Khabibullin. The theorem on the least majorant and its applications. II.~Entire and meromorphic functions of finite order. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 479-500. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a1/

[1] Khabibullin B. N., “Teorema o naimenshei mazhorante i ee primeneniya, I. Tselye i meromorfnye funktsii”, Izv. RAN . Ser. matem., 57:1 (1993), 129–146 | MR | Zbl

[2] Ronkin L. I., “Tselye funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 9, VINITI, M., 1986, 5–36 | MR

[3] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbf{C}^n$, Mir, M., 1984 | MR | Zbl

[4] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl

[5] Khërmander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[6] Koosis P., “La plus petite majorante surharmonique”, Ann. Inst. Fourier, 1983, no. 1, 67–107 | MR | Zbl

[7] Khabibullin B. N., “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1101–1123 | MR

[8] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973

[9] Khabibullin B. N., “Naimenshaya plyurisupergarmonicheskaya mazhoranta i multiplikatory tselykh funktsii, I”, Sib. matem. zhurn., 33:1 (1992), 173–178 | MR

[10] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[11] Essen M. R., “The $\cos{\pi\lambda}$ theorem”, Lect. Notes Math., 467, 1975, 1–98 | MR

[12] Govorov N. V., “O gipoteze Peili”, Funkts. analiz i ego prilozh., 3:2 (1969), 41–45 | MR | Zbl

[13] Petrenko V. P., “Rost meromorfnykh funktsii konechnogo nizhnego poryadka”, Izv. AN SSSR. Ser. matem., 33:2 (1969), 414–454 | MR | Zbl

[14] Dahlberg B., “Mean values of subharmonic functions”, Arkiv for Mat., 10 (1972), 293–309 | DOI | MR | Zbl

[15] Khabibullin B. N., “O malosti rosta na mnimoi osi tselykh funktsii eksponentsialnogo tipa s zadannymi nulyami”, Matem. zametki, 43:5 (1988), 644–650 | MR

[16] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[17] Kondratyuk A. A., Ryad Fure i meromorfnye funktsii, Vischa shkola, Lvov, 1988 | Zbl

[18] Khabibullin B. N., “Sravnenie subgarmonicheskikh funktsii po ikh assotsiirovannym meram”, Matem. sb., 125:4 (1984), 522–538 | MR | Zbl