On~approximation by harmonic polynomials in the $C^1$-norm on compact sets in~$\mathbf R^2$
Izvestiya. Mathematics , Tome 42 (1994) no. 2, pp. 321-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for an arbitrary compact set $X$ in $\mathbf R^2$ the following conditions are equivalent: 1) for every function $f\in C^1(\mathbf R^2)$, harmonic on $X^0$, and for any $\varepsilon>0$ a harmonic polynomial $p$ can be found such that $$ \|f-p\|_X\varepsilon,\qquad \|\nabla(f-p)\|_X\varepsilon; $$ 2) the set $\mathbf R^2\setminus X$ is connected
@article{IM2_1994_42_2_a3,
     author = {P. V. Paramonov},
     title = {On~approximation by harmonic polynomials in the $C^1$-norm on compact sets in~$\mathbf R^2$},
     journal = {Izvestiya. Mathematics },
     pages = {321--331},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a3/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - On~approximation by harmonic polynomials in the $C^1$-norm on compact sets in~$\mathbf R^2$
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 321
EP  - 331
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a3/
LA  - en
ID  - IM2_1994_42_2_a3
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T On~approximation by harmonic polynomials in the $C^1$-norm on compact sets in~$\mathbf R^2$
%J Izvestiya. Mathematics 
%D 1994
%P 321-331
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a3/
%G en
%F IM2_1994_42_2_a3
P. V. Paramonov. On~approximation by harmonic polynomials in the $C^1$-norm on compact sets in~$\mathbf R^2$. Izvestiya. Mathematics , Tome 42 (1994) no. 2, pp. 321-331. http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a3/

[1] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Matem. sb., 181:10 (1990), 1341–1365 | MR

[2] Rao N. V., “Approximation by gradients”, J. Approximation Theory, 12 (1974), 52–60 | DOI | MR | Zbl

[3] Weinstock B. M., “Uniform approximation by solutions of elliptic equations”, Proc. Amer. Math. Soc., 41:2 (1973), 513–517 | DOI | MR | Zbl

[4] Shaginyan A. A., “On potential approximation of vector fields”, Lecture Notes in Math., 1275, 1987, 272–279, Complex Analysis Proc. 1985–86, C. A. Berenstein (ed) | MR | Zbl

[5] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl

[6] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[7] Walsh J. L., “The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions”, Bull. Amer. Math. Soc., 35 (1929), 499–544 | DOI | Zbl