Homological properties of associative algebras: the method of helices
Izvestiya. Mathematics , Tome 42 (1994) no. 2, pp. 219-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

Homological properties of associative algebras arising in the theory of helices are studied. A class of noncommutative algebras is introduced in which it is natural (from the viewpoint of the theory of helices) to deform projective spaces and also certain Fano varieties. It is shown that in the case of deformations of the projective plane this approach leads to algebras associated with automorphisms of two-dimensional cubic curves.
@article{IM2_1994_42_2_a0,
     author = {A. I. Bondal and A. E. Polishchuk},
     title = {Homological properties of associative algebras: the method of helices},
     journal = {Izvestiya. Mathematics },
     pages = {219--260},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a0/}
}
TY  - JOUR
AU  - A. I. Bondal
AU  - A. E. Polishchuk
TI  - Homological properties of associative algebras: the method of helices
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 219
EP  - 260
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a0/
LA  - en
ID  - IM2_1994_42_2_a0
ER  - 
%0 Journal Article
%A A. I. Bondal
%A A. E. Polishchuk
%T Homological properties of associative algebras: the method of helices
%J Izvestiya. Mathematics 
%D 1994
%P 219-260
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a0/
%G en
%F IM2_1994_42_2_a0
A. I. Bondal; A. E. Polishchuk. Homological properties of associative algebras: the method of helices. Izvestiya. Mathematics , Tome 42 (1994) no. 2, pp. 219-260. http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a0/

[1] Artin M., “Geometry of quantum planes”, Azumaya algebras, actions, and modules (Bloomington, IN, 1990), Contemp. Math., 124, Amer. Math. Soc., Providence, RI, 1992, 1–15 | MR

[2] Manin Y., Quantum groups and non-commutative geometry, Les publications du Centre de Recherches Mathem. Universite de Montreal, 1990

[3] Cepp Zh.-P., “Algebraicheskie kogerentnye puchki”, Rassloennye prostranstva i ikh primeneniya, IL, M., 1958

[4] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 25–44 | MR

[5] Artin M., Tate J., Van den Bergh M., “Some algebras associated to automorphisms of elliptic curves”, The Grothendieck Festschrift, v. 1, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990, 33–85 | MR | Zbl

[6] Verdief J.-L., “Catégories dérivées”, Lect. Notes in Math., 569, 1977, 262–311

[7] Gelfand S. I., Manin Yu. I., Metody gomologicheskoi algebry,T. 1. Vvedenie v teoriyu kogomologii i proizvodnye kategorii, Nauka, M., 1988 | MR

[8] Bondal A. I., Kapranov M. M., “Osnaschennye triangulirovannye kategorii”, Matem. sb., 181:5 (1990), 669–683 | MR | Zbl

[9] Bondal A. I., Kapranov M. M., “Predstavimye funktory, funktory Serra i perestroiki”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1183–1205 | MR

[10] Happel D., “On the derived category of a finite-dimensional algebra”, Comm. Math. Helv., 62 (1987), 339–389 | DOI | MR | Zbl

[11] Beilinson A. A., Bernstein J. N., Deligne P., “Faisceaux pervers”, Analysis and topology on singular spaces, I (Luminy, 1981), Asterisque, Soc. Math. France, Paris, 1982, 5–171 | MR

[12] Kapranov M. M., “On the derived category of coherent sheaves on some homogeneous spaces”, Invent. Math., 92 (1988), 479–508 | DOI | MR | Zbl

[13] Gorodentsev A. L., “Perestroiki isklyuchitelnykh rassloenii na $\mathbf{P}^n$”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 3–15 | MR

[14] Gorodentsev A. L., Rudakov A. N., “Exceptional vector bundles on projective spaces”, Duke. Math. J., 54:1 (1987), 115–130 | DOI | MR | Zbl

[15] Rudakov A. N., “Isklyuchitelnye rassloeniya na $\mathbf{P}^2$ i chisla Markova”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 100–112

[16] Rudakov A. N., “Isklyuchitelnye rassloeniya na kvadrike”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 788–812 | Zbl

[17] Nogin D. Yu., “Spirali perioda chetyre i uravneniya tipa Markova”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 862–878

[18] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[19] Beilinson A. A., “Kogerentnye puchki na $\mathbf{P}^n$ i problemy lineinoi algebry”, Funkts. analiz, 12:3 (1978), 68–69 | MR | Zbl

[20] Swan R. G., “$K$-theory of quadric hypersurfaces”, Ann. Math., 121:1 (1985), 113–153 | DOI | MR

[21] Kapranov M. M., “Proizvodnaya kategoriya kogerentnykh puchkov na kvadrike”, Funkts. analiz i ego prilozh., 20:2 (1986), 67 | MR | Zbl

[22] Orlov D. O., “Isklyuchitelnyi nabor vektornykh rassloenii na mnogoobrazii $V_S$”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1991, no. 5, 69–71 | MR | Zbl

[23] Orlov D. O., “Proektivnye rassloeniya, monoidalnye preobrazovaniya i proizvodnye kategorii kogerentnykh puchkov”, Izv. AN SSSR. Ser. matem., 56:4 (1992), 852–862 | MR | Zbl

[24] Beilinson A. A., Ginsburg V. A., Schechtman V. V., “Koszul duality”, JGP, 5:3 (1988), 317–350 | DOI | MR | Zbl

[25] Priddy S., “Koszul resolutions”, Trans. AMS, 152 (1970), 39–60 | DOI | MR | Zbl

[26] Hughes J., Waschbiisch J., “Trivial extensions of tilted algebras”, Proc. London. Math. Soc. (3), 46 (1983), 347–364 | DOI | MR | Zbl

[27] Bernshtein I. N., Gelfand I. M., Gelfand S. I., “Algebraicheskie rassloeniya na $\mathbf{P}^n$ i zadachi lineinoi algebry”, Funkts. analiz, 12:3 (1978), 66–67 | MR

[28] Meltzer H., Generalized Bernstein–Gelfand–Gelfand functors, Preprint, 1991 | MR

[29] Thrall R. M., Chanler J. H., “Ternary trilmear forms in the field of complex numbers”, Duke. Math. J., 4:4 (1938), 678–690 | DOI | MR | Zbl

[30] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera. II: Predstavleniya kvantovoi algebry”, Funkts. analiz i ego prilozh., 17 (1983), 34–38 | MR

[31] Odesskii A. V., Feigin B. L., Algebry Sklyanina, assotsiirovannye s ellipticheskoi krivoi, Preprint ITF-89-16R, In-t Teor. fiziki AN UkrSSR, Kiev, 1990

[32] Artin M., Schelter W., “Graded algebras of global dimension 3”, Advances in Math., 66 (1987), 171–216 | DOI | MR | Zbl

[33] Artin M., Tale J., Van den Bergh M., “Modules over regular algebras of dimension 3”, Invent. Math., 106 (1991), 335–388 | DOI | MR | Zbl