On~sets uniqueness for series in various systems of functions
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 149-162

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that sets of first category are $\mathscr U$-sets for series in the Rademacher system. For series in the Faber–Schauder system with coefficients tending to zero it is proved that every countable set and every set of Cantor type with ratio $2^{-m}$ $(m=2,3,4,\dots)$ is a set of uniqueness.
@article{IM2_1994_42_1_a7,
     author = {N. N. Kholshchevnikova},
     title = {On~sets uniqueness for series in various systems of functions},
     journal = {Izvestiya. Mathematics },
     pages = {149--162},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a7/}
}
TY  - JOUR
AU  - N. N. Kholshchevnikova
TI  - On~sets uniqueness for series in various systems of functions
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 149
EP  - 162
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a7/
LA  - en
ID  - IM2_1994_42_1_a7
ER  - 
%0 Journal Article
%A N. N. Kholshchevnikova
%T On~sets uniqueness for series in various systems of functions
%J Izvestiya. Mathematics 
%D 1994
%P 149-162
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a7/
%G en
%F IM2_1994_42_1_a7
N. N. Kholshchevnikova. On~sets uniqueness for series in various systems of functions. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 149-162. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a7/