On~sets uniqueness for series in various systems of functions
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 149-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that sets of first category are $\mathscr U$-sets for series in the Rademacher system. For series in the Faber–Schauder system with coefficients tending to zero it is proved that every countable set and every set of Cantor type with ratio $2^{-m}$ $(m=2,3,4,\dots)$ is a set of uniqueness.
@article{IM2_1994_42_1_a7,
     author = {N. N. Kholshchevnikova},
     title = {On~sets uniqueness for series in various systems of functions},
     journal = {Izvestiya. Mathematics },
     pages = {149--162},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a7/}
}
TY  - JOUR
AU  - N. N. Kholshchevnikova
TI  - On~sets uniqueness for series in various systems of functions
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 149
EP  - 162
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a7/
LA  - en
ID  - IM2_1994_42_1_a7
ER  - 
%0 Journal Article
%A N. N. Kholshchevnikova
%T On~sets uniqueness for series in various systems of functions
%J Izvestiya. Mathematics 
%D 1994
%P 149-162
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a7/
%G en
%F IM2_1994_42_1_a7
N. N. Kholshchevnikova. On~sets uniqueness for series in various systems of functions. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 149-162. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a7/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] Kechris A., Louveau A., Descriptive set theory and the structure of sets of uniqueness, Cambridge Univ. Press, 1987 | MR | Zbl

[3] Kholschevnikova N. N., “O summe menshe kontinuuma zamknutykh $U$-mnozhestv”, Vestn. MGU, 1981, no. 1, 51–55

[4] Okstobi Dzh., Mera i kategoriya, Mir, M., 1974

[5] Arutyunyan F. G., Talalyan A. A., “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1391–1408 | MR | Zbl

[6] Mushegyan G. M., “O mnozhestvakh edinstvennosti dlya sistemy Khaara”, Izv. AN ArmSSR. Ser. matem., 2:6 (1967), 350–361 | MR | Zbl

[7] Stechkin S. B., Ulyanov P. L., “O mnozhestvakh edinstvennosti”, Izv. AN SSSR. Ser. matem., 26:2 (1962), 211–222 | Zbl

[8] Bakhshetsyan A. V., “O nulyakh ryadov po sisteme Rademakhera”, Matem. zametki, 33:2 (1983), 169–178 | MR | Zbl

[9] Nemytskii V. V., “O nekotorykh klassakh lineinykh mnozhestv v svyazi s absolyutnoi skhodimostyu trigonometricheskikh ryadov”, Matem. sb., 33:1 (1926), 5–32 | Zbl

[10] Spravochnaya kniga po matematicheskoi logike. Ch. II. Teoriya mnozhestv, Mir, M., 1982

[11] Malykhin V. I., Kholschevnikova N. N., “Nezavisimost dvukh teoretiko-mnozhestvennykh utverzhdenii v teorii summirovaniya”, Matem. zametki, 28:6 (1980), 869–882 | MR | Zbl

[12] Heckler S. H., “Independence results concerning the number of nowhere dense closed subsets necessary to cover the real line”, Acta Math. Acad. Sci. Hungary, 24:1,2 (1973), 27–32 | DOI | MR

[13] Miller A. W., “Special Subsets of the Real Line”, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 201–233, Chapter 5 | MR

[14] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[15] Kuratovskii K., Topologiya, t. 1, Mir, M., 1966 | MR