The theorem on the least majorant and its applications.I.~Entire and meromorphic functions
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 115-131

Voir la notice de l'article provenant de la source Math-Net.Ru

The general concept of sweeping out is used to generalize the theorem of Koosis on the least superharmonic majorant in $\mathbb C$ to least majorants with respect to a convex cone of functions defined in a domain in $\mathbb R^k$ or $\mathbb C^n$. This generalization is applied to the description of nontrivial ideals and analytic sets of nonuniqueness of codimension 1 in algebras of entire functions, and to the representation of meromorphic functions of given growth.
@article{IM2_1994_42_1_a5,
     author = {B. N. Khabibullin},
     title = {The theorem on the least majorant and its {applications.I.~Entire} and meromorphic functions},
     journal = {Izvestiya. Mathematics },
     pages = {115--131},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a5/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - The theorem on the least majorant and its applications.I.~Entire and meromorphic functions
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 115
EP  - 131
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a5/
LA  - en
ID  - IM2_1994_42_1_a5
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T The theorem on the least majorant and its applications.I.~Entire and meromorphic functions
%J Izvestiya. Mathematics 
%D 1994
%P 115-131
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a5/
%G en
%F IM2_1994_42_1_a5
B. N. Khabibullin. The theorem on the least majorant and its applications.I.~Entire and meromorphic functions. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 115-131. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a5/