The theorem on the least majorant and its applications.I.~Entire and meromorphic functions
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 115-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general concept of sweeping out is used to generalize the theorem of Koosis on the least superharmonic majorant in $\mathbb C$ to least majorants with respect to a convex cone of functions defined in a domain in $\mathbb R^k$ or $\mathbb C^n$. This generalization is applied to the description of nontrivial ideals and analytic sets of nonuniqueness of codimension 1 in algebras of entire functions, and to the representation of meromorphic functions of given growth.
@article{IM2_1994_42_1_a5,
     author = {B. N. Khabibullin},
     title = {The theorem on the least majorant and its {applications.I.~Entire} and meromorphic functions},
     journal = {Izvestiya. Mathematics },
     pages = {115--131},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a5/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - The theorem on the least majorant and its applications.I.~Entire and meromorphic functions
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 115
EP  - 131
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a5/
LA  - en
ID  - IM2_1994_42_1_a5
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T The theorem on the least majorant and its applications.I.~Entire and meromorphic functions
%J Izvestiya. Mathematics 
%D 1994
%P 115-131
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a5/
%G en
%F IM2_1994_42_1_a5
B. N. Khabibullin. The theorem on the least majorant and its applications.I.~Entire and meromorphic functions. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 115-131. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a5/

[1] Koosis P., “La plus petite majorante surharmonique et son rapport avec l'existence des functions entieres de type exponentiel jouant le role de multiplicateurs”, Ann. Instl. Fourier, 33:1 (1983), 67–107 | MR | Zbl

[2] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973

[3] Rubel L. A., Taylor B. A., “A Fourier series method for meromorphic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | Zbl

[4] Miles J. B., “Quotient representations of meromorphic functions”, J. d'Analyse Math., 25 (1972), 371–388 | DOI | MR | Zbl

[5] Kujala R. O., “Functions of finite $\lambda$-type in several complex variables”, Trans. Amer. Math. Soc., 161 (1971), 327–358 | DOI | MR | Zbl

[6] Scoda H., “Solution a croisance du second probleme de Cousin danc $\mathbf{C}^n$”, Ann. Inst. Fourier, 21:1 (1971), 11–23 | MR

[7] Lelon P., Gruman L., Tselye funktsii mnogikh peremennykh, Mir, M., 1989 | MR | Zbl

[8] Stoll W., “About entire and meromorphic functions of exponential type”, Proc. Symp. Pure Math., 11, Amer. Math. Soc., 1968, 332–340 | MR

[9] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[10] Ronkin L. I., “Tselye funktsii”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 9, VINITI, M., 1986, 5–36 | MR

[11] Shabat B. V., Vvedenie v kompleksnyi analiz, t. 2, Nauka, M., 1985 | MR

[12] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[13] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[14] Goldberg A. A., “O predstavlenii meromorfnoi funktsii v vide chastnogo tselykh funktsii”, Izv. VUZov. Matematika, 1972, no. 10, 13–17

[15] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[16] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[17] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[18] Burbaki N., Integrirovanie mery, integrirovanie mer, Nauka, M., 1967 | MR

[19] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[20] Khabibullin B. N., “Naimenshaya plyurisupergarmonicheskaya mazhoranta i multiplikatory tselykh funktsii, I”, Sib. matem. zhurn., 33:1 (1992), 173–178 | MR

[21] Khabibullin B. N., “Naimenshaya plyurisupergarmonicheskaya mazhoranta i multiplikatory tselykh funktsii. II: Algebry funktsii konechnogo $\lambda$-tipa”, Sib. matem. zhurn., 33:3 (1992), 186–191 | MR