Joinings, intertwining operators, factors, and mixing properties of dynamical systems
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 91-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is mostly devoted to the following problem. If the Markov (stochastic) centralizer of a measure-preserving action $\Psi$ is known, what can be said about the Markov centralizer of the action $\Psi\otimes\Psi$? For a mixing flow with minimal Markov centralizer the author proves the triviality of the Markov centralizer of a Cartesian power of it, from which it follows that this flow possesses mixing of arbitrary multiplicity. For actions of the groups $\mathbf Z^n$ the analogous assertion holds if their tensor product with themselves does not possess three pairwise independent factors. In particular, this is true for actions of $\mathbf Z^n$ admitting a partial approximation and possessing mixing of multiplicity 2.
@article{IM2_1994_42_1_a4,
     author = {V. V. Ryzhikov},
     title = {Joinings, intertwining operators, factors, and mixing properties of dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {91--114},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a4/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Joinings, intertwining operators, factors, and mixing properties of dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 91
EP  - 114
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a4/
LA  - en
ID  - IM2_1994_42_1_a4
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Joinings, intertwining operators, factors, and mixing properties of dynamical systems
%J Izvestiya. Mathematics 
%D 1994
%P 91-114
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a4/
%G en
%F IM2_1994_42_1_a4
V. V. Ryzhikov. Joinings, intertwining operators, factors, and mixing properties of dynamical systems. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 91-114. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a4/

[1] Khalmosh P., Lektsii po ergodicheskoi teorii, IL, M., 1959

[2] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation”, Math. System Theory, 1 (1967), 1–49 | DOI | MR | Zbl

[3] Rudolph D., “An example of measure-preserving map with minimal self-joinings, and applications”, J. d'Analyse Math., 35 (1979), 97–122 | DOI | MR | Zbl

[4] del Junco A., Rahe A. M., Swanson L., “Chacon's automorphism has minimal self-joinings”, J. d'Analyse Math., 37 (1980), 276–284 | DOI | MR | Zbl

[5] Veech W. A., “A criterion for a process to be prime”, Monatshefte Math., 94 (1982), 335–341 | DOI | MR | Zbl

[6] del Junco A., “A family of caunterexamples in ergodic theory”, Israel J. Math., 44 (1983), 160–188 | DOI | MR | Zbl

[7] Ratner M., “Horocycle flows, joinings and rigidity of products”, Annals of Mathematics, 118 (1983), 277–313 | DOI | MR | Zbl

[8] del Junco A., Park K., “An example of a measure-preserving flow with minimal self-joinings”, J. d'Analyse Math., 42 (1983), 199–211 | MR

[9] del Junco A., Rudolph D., “On ergodic actions whose self-jonings are graphs”, Ergod. Th.{}Dynam. Sys., 7 (1987), 531–557 | MR | Zbl

[10] King J., “Joinings-rank and the structure of finit rank mixing transformation”, J. d'Analyse Math., 51 (1988), 182–227 | DOI | Zbl

[11] Ryzhikov V. V., “Zamechanie o kratnom peremeshivanii”, UMN, 44:1(265) (1989), 205–206 | MR | Zbl

[12] Host B., Mixing of all orders and pairwise independent joinings of systems with singular spectrum, Preprint, Universite Paris-Nord, 1989 | MR

[13] King J., Ergodic properties where order 4 implies infinit orders, Preprint, U.K. Bercely, 1990 | MR

[14] Ryzhikov V. V., Peremeshivanie, rang i minimalnoe samoprisoedinenie sokhranyayuschikh meru preobrazovanii, Preprint VINITI, 1991, 1–68

[15] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl

[16] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978 | MR | Zbl

[17] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[18] Glasner S., “Quasi-factors in ergodic theory”, Israel J. Math., 45:2,3 (1983), 198–208 | DOI | MR | Zbl

[19] Katok A. B., Stëpin A. M., “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (1967), 81–106 | MR | Zbl

[20] Ryzhikov V. V., “Svyaz peremeshivayuschikh svoistv potoka s izomorfizmom vkhodyaschikh v nego preobrazovanii”, Matem. zametki, 49:6 (1991), 98–106 | MR | Zbl

[21] Furstenberg H., Katznelson Y., Ornstein D., “The ergodic theoretical proof of Szemeredi's theorem”, Bull. AMS, 7:3 (1982), 527–552 | DOI | MR

[22] Rokhlin V. A., “Ob endomorfizmakh kompaktnykh kommutativnykh grupp”, Izv. AN SSSR. Ser. matem., 13:4 (1949), 329–340 | Zbl

[23] Ledrappier F., “Un champ marcovien peut etre d'entropie null et melangeant”, C.R. Acad. Sci. Paris. Ser. A., 287 (1978), 561–563 | MR | Zbl

[24] Marcus B., “The horocycle flow is mixing of all degrees”, Inv. Math., 46 (1978), 201–209 | DOI | MR | Zbl

[25] Vershik A. M., Yuzvinskii S. A., “Dinamicheskie sistemy s invariantnoi meroi”, Itogi nauki. 1967. Matem. analiz, VINITI, M., 1969, 133–187

[26] Freedman N. A., Thomas E. S., “Higher order sweeping out”, Illinois J. Math., 29:3 (1985), 401–417 | MR

[27] Ornstein D., “On the root problem in ergodic theory”, Proc. Sixth Berkley Symp. Math. Stat. Prob., II, 1967, 347–356 | MR

[28] Kalikov S. A., “Twofold mixing implies threefold mixing for rank one transformation”, Ergod. Th.{}Dynam. Sys., 4 (1984), 237–259 | MR

[29] Blum J. R., Hanson D. L., “On the mean ergodic theorem for subsequences”, Bull. Amer. Math. Soc., 66 (1960), 308–311 | DOI | MR | Zbl

[30] King J., “The commutant is the weak closure of the powers, for the rank-1 transformation”, Ergod. Th.{}Dynam. Sys., 6 (1986), 363–384 | MR | Zbl