Alexander polynomials of plane algebraic curves
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 67-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies the fundamental group of the complement of an algebraic curve $D\subset\mathbf C^2$ defined by an equation $f(x,y)=0$. Let $F\colon X=\mathbf C^2\setminus D\to\mathbf C^*=\mathbf C\setminus\{0\}$ be the morphism defined by the equation $z=f(x,y)$. The main result is that if the generic fiber $Y=F^{-1}(z_0)$ is irreducible, then the kernel of the homomorphism $F_*\colon\pi_1(X)\to\pi_1(\mathbf C^*)$ is a finitely generated group. In particular, if $D$ is an irreducible curve, then the commutator subgroup of $\pi_1(X)$ is finitely generated. The internal and external Alexander polynomials of a curve $D$ (denoted by $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ respectively) are introduced, and it is shown that the Alexander polynomial $\Delta_1(t)$ of the curve $D$ divides $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ and is a reciprocal polynomial whose roots are roots of unity. Furthermore, if $D$ is an irreducible curve, the Alexander polynomial $\Delta_1(t)$ of the curve $D$ satisfies the condition $\Delta_1(1)=\pm1$. From this it follows that among the roots of the Alexander polynomial $\Delta_1(t)$ of an irreducible curve there are no primitive roots of unity of degree $p^n$, where $p$ is a prime number.
@article{IM2_1994_42_1_a3,
     author = {Vik. S. Kulikov},
     title = {Alexander polynomials of plane algebraic curves},
     journal = {Izvestiya. Mathematics },
     pages = {67--89},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a3/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Alexander polynomials of plane algebraic curves
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 67
EP  - 89
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a3/
LA  - en
ID  - IM2_1994_42_1_a3
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Alexander polynomials of plane algebraic curves
%J Izvestiya. Mathematics 
%D 1994
%P 67-89
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a3/
%G en
%F IM2_1994_42_1_a3
Vik. S. Kulikov. Alexander polynomials of plane algebraic curves. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 67-89. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a3/

[1] A'Campo N., “La fonction zeta d'une monodromie”, Commentarii Mathematici Helvetici, 54:2 (1979), 318–327 | DOI | MR

[2] Esnault H., “Fibre de Milnor d'un cone sur une courbe plane singuliére”, Invent. Math., 68 (1982), 477–496 | DOI | MR | Zbl

[3] Kohno T., “An algebraic computation of the Alexander polynomial of plane algebraic curve”, Proc. Japan Acad. Ser A. Math., 59 (1983), 94–97 | DOI | MR | Zbl

[4] Kollinz D., Tsishang X., “Kombinatornaya teoriya grupp i fundamentalnye gruppy”, Itogi nauki i tekhniki. Ser. sovremennye problemy matematiki. Fundamentalnye napravleniya, 58, 1990, 5–190 | MR

[5] Krouell R., Foks R., Vvedenie v teoriyu uzlov, Mir, M., 1967 | MR

[6] Kulikov Vik. S., “Fundamentalnaya gruppa dopolneniya k giperpoverkhnosti v $\mathbf{C}^n$”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 407–428 | MR | Zbl

[7] Kulikov Vik. S., “O strukture fundamentalnoi gruppy dopolneniya k algebraicheskim krivym v $\mathbf{C}^2$”, Izv. AN SSSR. Ser. matem., 56:2 (1992), 469–480 | MR | Zbl

[8] Leng S., Algebra, Mir, M., 1968

[9] Libgober A., “Alexander polynomial of plane algebraic curves and cyclic multiple planes”, Duke Math. J., 49 (1982), 833–851 | DOI | MR | Zbl

[10] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[11] Nori M., “Zariski's conjecture and related problems”, Ann. Sci. Ec. Norm. Sup. Ser. 4, 16 (1983), 305–344 | MR | Zbl

[12] Randell R., “Milnor fibers and Alexander polynomials of plane algebraic curves”, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence. R.I., 1983, 415–420, Part 2 | MR

[13] Zariski O., Algebraic Surfaces, Springer-Verlag, Berlin, Heidelberg, New York, 1971 | MR | Zbl

[14] Zariski O., “On the linear connection index of the algebraic surface $z^n=f(x,y)$”, Proc. Nat. Acad. Sci. USA, 15 (1929), 494–501 | DOI | Zbl