Alexander polynomials of plane algebraic curves
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 67-89

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies the fundamental group of the complement of an algebraic curve $D\subset\mathbf C^2$ defined by an equation $f(x,y)=0$. Let $F\colon X=\mathbf C^2\setminus D\to\mathbf C^*=\mathbf C\setminus\{0\}$ be the morphism defined by the equation $z=f(x,y)$. The main result is that if the generic fiber $Y=F^{-1}(z_0)$ is irreducible, then the kernel of the homomorphism $F_*\colon\pi_1(X)\to\pi_1(\mathbf C^*)$ is a finitely generated group. In particular, if $D$ is an irreducible curve, then the commutator subgroup of $\pi_1(X)$ is finitely generated. The internal and external Alexander polynomials of a curve $D$ (denoted by $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ respectively) are introduced, and it is shown that the Alexander polynomial $\Delta_1(t)$ of the curve $D$ divides $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ and is a reciprocal polynomial whose roots are roots of unity. Furthermore, if $D$ is an irreducible curve, the Alexander polynomial $\Delta_1(t)$ of the curve $D$ satisfies the condition $\Delta_1(1)=\pm1$. From this it follows that among the roots of the Alexander polynomial $\Delta_1(t)$ of an irreducible curve there are no primitive roots of unity of degree $p^n$, where $p$ is a prime number.
@article{IM2_1994_42_1_a3,
     author = {Vik. S. Kulikov},
     title = {Alexander polynomials of plane algebraic curves},
     journal = {Izvestiya. Mathematics },
     pages = {67--89},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a3/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Alexander polynomials of plane algebraic curves
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 67
EP  - 89
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a3/
LA  - en
ID  - IM2_1994_42_1_a3
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Alexander polynomials of plane algebraic curves
%J Izvestiya. Mathematics 
%D 1994
%P 67-89
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a3/
%G en
%F IM2_1994_42_1_a3
Vik. S. Kulikov. Alexander polynomials of plane algebraic curves. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 67-89. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a3/