Asymptotic of the solution of a boundary value problem in a thin cylinder with nonsmooth
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 183-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mixed boundary value problem is considered for a selfadjoint elliptic second order equation in a three-dimensional cylinder $Q_\varepsilon$ of small height $\varepsilon$, with Dirichlet conditions on the lateral surface and Neumann conditions on the bases. The cross-section $\Omega$ of the cylinder has a corner point at 0. The full asymptotic expansion of the solution in a series of powers of the small parameter $\varepsilon$ is derived. In contrast to the iterative processes for a smooth boundary $\partial\Omega$, here there arises an additional (corner) boundary layer in the neighborhood of 0. This layer is described by means of the solutions of the boundary value problem in the domain $t=K\times(-\frac12, \frac12)$, where $K$ is a plane angle. The solvability of the problem is investigated in some Hilbert spaces of functions with weighted norms, and asymptotic representations of the solutions at infinity are established. The construction of the asymptotics of the solution with respect to $\varepsilon$ is based on the method of redistribution of residuals between the right-hand sides of the limiting problems.
@article{IM2_1994_42_1_a10,
     author = {S. A. Nazarov},
     title = {Asymptotic of the solution of a boundary value problem in a thin cylinder with nonsmooth},
     journal = {Izvestiya. Mathematics },
     pages = {183--217},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a10/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic of the solution of a boundary value problem in a thin cylinder with nonsmooth
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 183
EP  - 217
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a10/
LA  - en
ID  - IM2_1994_42_1_a10
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic of the solution of a boundary value problem in a thin cylinder with nonsmooth
%J Izvestiya. Mathematics 
%D 1994
%P 183-217
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a10/
%G en
%F IM2_1994_42_1_a10
S. A. Nazarov. Asymptotic of the solution of a boundary value problem in a thin cylinder with nonsmooth. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 183-217. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a10/

[1] Dzhavadov M. G., “Asimptotika resheniya kraevoi zadachi dlya ellipticheskikh uravnenii vtorogo poryadka v tonkikh oblastyakh”, Differents. uravn., 5:10 (1968), 1901–1909

[2] Zino I. E., Tropp E. A., Asimptoticheskie metody v zadachakh teploprovodnosti i termouprugosti, LGU, L., 1978, 256 pp.

[3] Kucherenko V. V., Popov V. A., “Vysokochastotnye kolebaniya plastin”, DAN SSSR, 244:4 (1979), 819–823 | MR | Zbl

[4] Nazarov S. A., “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vest. LGU, 1982, no. 7, 65–68 | Zbl

[5] Leora S. N., Nazarov S. A., Proskura A. V., “Vyvod predelnykh uravnenii dlya ellipticheskikh zadach v tonkikh oblastyakh pri pomoschi EVM”, ZhVM i MF, 26:7 (1986), 1032–1048 | MR | Zbl

[6] Goldenveizer A. L., Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 448 pp. | MR

[7] Verdichevskii V. L., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 448 pp. | MR

[8] Kucherenko V. V., Popov V. A., “Asimptotika reshenii zadach teorii uprugosti v tonkikh oblastyakh”, DAN SSSR, 274:1 (1984), 58–61 | MR | Zbl

[9] Nazarov S. A., Vvedenie v asimptoticheskie metody teorii uprugosti, LGU, L., 1983, 120 pp.

[10] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, TGU, Tbilisi, 1980, 206 pp. | MR

[11] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 2: Zadacha v ogranichennoi oblasti”, Sib. matem. zhurn., 22:5 (1981), 132–152 | MR | Zbl

[12] Nazarov S. A., “Ob asimptotike po parametru resheniya ellipticheskoi kraevoi zadachi s periodicheskimi koeffitsientami v tsilindre”, Differents. uravn. i ikh primen., no. 30, AN Lit. SSR, Vilnyus, 1981, 27–46

[13] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[14] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp. | MR | Zbl

[15] Nazarov S. A., Asimptoticheskie razlozheniya sobstvennykh chisel, LGU, L., 1987, 109 pp.

[16] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16 (1963), 121–239 | DOI | MR | Zbl

[17] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, 1967, 209–292

[18] Oleinik O. A., Iosifyan G. A., “O povedenii na beskonechnosti reshenii uravnenii vtorogo poryadka v oblasti s nekompaktnoi granitsei”, Matem. sb., 112:4 (1980), 588–610 | MR | Zbl

[19] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | MR

[20] Ilin A. M., Gorkov Yu. P., Lelikova E. F., “Asimptotika resheniya ellipticheskogo uravneniya s malym parametrom pri starshei proizvodnoi v okrestnosti osoboi kharakteristiki predelnogo uravneniya”, Tr. seminara im. I. G. Petrovskogo, 1, MGU, M., 1975, 75–133

[21] Ilin A. M., Lelikova E. F., “Metod sraschivaniya asimptoticheskikh predstavlenii dlya uravneniya $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ v pryamougolnike”, Matem. sb., 96:4 (1975), 563–583 | MR

[22] Butuzov V. F., “Uglovoi pogransloi v singulyarno vozmuschennykh zadachakh s chastnymi proizvodnymi”, Differents. uravn., 15:10 (1979), 1848–1862 | MR | Zbl

[23] Nazarov S. A., “Asimptotika na beskonechnosti resheniya zadachi Neimana s usloviyami sopryazheniya v ugle”, Izv. VUZov. Matematika, 1984, no. 1, 18–25 | Zbl

[24] Movchan A. B., Nazarov S. A., “Asimptoticheskoe povedenie napryazhenno-deformirovannogo sostoyaniya vblizi ostrykh vklyuchenii”, DAN SSSR, 290:1 (1986), 48–51 | MR | Zbl

[25] Mazya V. G., Plamenevskii B. A., “Ob ellipticheskikh kraevykh zadachakh v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekhanike sploshnykh sred i rodstvennym problemam analiza, t. 1, Metsniereba, Tbilisi, 1973, 171–181

[26] Mazya V. G., Plamenevskii B. A., “Ellipticheskie kraevye zadachi na mnogoobraziyakh s osobennostyami”, Problemy matem. analiza, no. 6, LGU, L., 1977, 85–142

[27] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, UMN, 38:2 (1983), 3–76 | MR