Picard's theorem for ordinary differential equations in locally convex spaces
Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 465-487
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of infinite-dimensional Frechet spaces is constructed, including certain subspaces of $C^\infty[-1,1]$, in which Picard's theorem on solvability of an ODE with smooth right-hand side is valid in the usual formulation. Every continuous linear operator on these spaces has an exponential.
@article{IM2_1993_41_3_a3,
author = {S. G. Lobanov},
title = {Picard's theorem for ordinary differential equations in locally convex spaces},
journal = {Izvestiya. Mathematics },
pages = {465--487},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/}
}
S. G. Lobanov. Picard's theorem for ordinary differential equations in locally convex spaces. Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 465-487. http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/