Picard's theorem for ordinary differential equations in locally convex spaces
Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 465-487.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of infinite-dimensional Frechet spaces is constructed, including certain subspaces of $C^\infty[-1,1]$, in which Picard's theorem on solvability of an ODE with smooth right-hand side is valid in the usual formulation. Every continuous linear operator on these spaces has an exponential.
@article{IM2_1993_41_3_a3,
     author = {S. G. Lobanov},
     title = {Picard's theorem for ordinary differential equations in locally convex spaces},
     journal = {Izvestiya. Mathematics },
     pages = {465--487},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/}
}
TY  - JOUR
AU  - S. G. Lobanov
TI  - Picard's theorem for ordinary differential equations in locally convex spaces
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 465
EP  - 487
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/
LA  - en
ID  - IM2_1993_41_3_a3
ER  - 
%0 Journal Article
%A S. G. Lobanov
%T Picard's theorem for ordinary differential equations in locally convex spaces
%J Izvestiya. Mathematics 
%D 1993
%P 465-487
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/
%G en
%F IM2_1993_41_3_a3
S. G. Lobanov. Picard's theorem for ordinary differential equations in locally convex spaces. Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 465-487. http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/

[1] Lobanov S. G., “O razreshimosti lineinykh obyknovennykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Vest. MGU. Ser. 1. Matematika, mekhanika, 1980, no. 2, 3–7 | MR | Zbl

[2] Millionschikov B. M., “K teorii differentsialnykh uravnenii $dx/dt=f(x,t)$ lokalno vypuklykh prostranstvakh”, DAN SSSR, 131 (1960), 510–514

[3] Millionschikov V. M., “K teorii differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 57(99):4 (1962), 385–406

[4] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[5] Bonet J., Perez Carreras P., Barelled locally convex spaces, Math. Studies, 131, North-Holland, 1987 | MR | Zbl

[6] Shkarin S. A., “Neskolko rezultatov o razreshimosti obyknovennykh lineinykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 181:9 (1990), 1183–1195 | MR

[7] Dragilev M. M., Kondakov V. P., “Ob odnom klasse yadernykh prostranstv”, Matem. zametki, 8:2 (1970), 169–179 | MR | Zbl

[8] Averbukh V. I., Smolyanov O. G., “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | MR | Zbl

[9] Smolyanov O. G., Analiz na topologicheskikh lineinykh prostranstvakh i ego prilozheniya, Mosk. un-t, M., 1979

[10] Sova M., “Usloviya differentsiruemosti v lineinykh topologicheskikh prostranstvakh”, Chekh. matem. zhurn., 16 (1966), 339–362 | MR | Zbl

[11] Shefer X., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[12] Vogt D., “Charakterisierung der Unterräume von $s$”, Math. Z., 155:2 (1977), 109–117 | DOI | MR | Zbl