Picard's theorem for ordinary differential equations in locally convex spaces
Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 465-487

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of infinite-dimensional Frechet spaces is constructed, including certain subspaces of $C^\infty[-1,1]$, in which Picard's theorem on solvability of an ODE with smooth right-hand side is valid in the usual formulation. Every continuous linear operator on these spaces has an exponential.
@article{IM2_1993_41_3_a3,
     author = {S. G. Lobanov},
     title = {Picard's theorem for ordinary differential equations in locally convex spaces},
     journal = {Izvestiya. Mathematics },
     pages = {465--487},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/}
}
TY  - JOUR
AU  - S. G. Lobanov
TI  - Picard's theorem for ordinary differential equations in locally convex spaces
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 465
EP  - 487
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/
LA  - en
ID  - IM2_1993_41_3_a3
ER  - 
%0 Journal Article
%A S. G. Lobanov
%T Picard's theorem for ordinary differential equations in locally convex spaces
%J Izvestiya. Mathematics 
%D 1993
%P 465-487
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/
%G en
%F IM2_1993_41_3_a3
S. G. Lobanov. Picard's theorem for ordinary differential equations in locally convex spaces. Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 465-487. http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a3/