Integrable problems of the dynamics of coupled rigid bodies
Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 395-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several classical problems of dynamics are shown to be integrable for the special systems of coupled rigid bodies introduced in this paper and called $C^k$-central configurations. It is proved that the dynamics of an arbitrary $C^k$-central configuration in the Newtonian gravitational field with an arbitrary quadratic potential is integrable in the Liouville sense and in theta-functions of Riemann surfaces. A hidden symmetry of the inertial dynamics of these configurations is found, and reductions of the corresponding Lagrange equations to the Euler equations on the direct sums of Lie coalgebras $SO(3)$ are obtained. Reductions and integrable cases of the equations for the rotation of a heavy $C^k$-central configuration about a fixed point are indicated. Separation of rotations of a space station type orbiting system, which is a $C^k$-central configuration of rigid bodies, is proved. This result leads to the possibility of independent stabilization of rotations of the rigid bodies in such orbiting configurations. Integrability of the inertial dynamics of $CR^n$-central configurations of coupled gyrostats is proved.
@article{IM2_1993_41_3_a0,
     author = {O. I. Bogoyavlenskii},
     title = {Integrable problems of the dynamics of coupled rigid bodies},
     journal = {Izvestiya. Mathematics },
     pages = {395--416},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a0/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Integrable problems of the dynamics of coupled rigid bodies
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 395
EP  - 416
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a0/
LA  - en
ID  - IM2_1993_41_3_a0
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Integrable problems of the dynamics of coupled rigid bodies
%J Izvestiya. Mathematics 
%D 1993
%P 395-416
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a0/
%G en
%F IM2_1993_41_3_a0
O. I. Bogoyavlenskii. Integrable problems of the dynamics of coupled rigid bodies. Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 395-416. http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a0/

[1] Abraham R., Marsden J. E., Foundations of mechanics, The Benjamin Cummings Publishing Company, Inc., London, Amsterdam, Don Mills, Ontario, Sydney, Tokyo, 1978 | MR

[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[3] Baillieul J., Contemporary Mathematics, 97, 1989 | MR

[4] Bobenko A. I, Reyman A. G., Semenov-Tian-Shansky M. A., “The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions”, Communications in Mathematical Physics, 122 (1989), 321–354 | DOI | MR

[5] Beletskii V. V., Dinamika iskusstvennogo sputnika vokrug tsentra mass, Nauka, M., 1965 | Zbl

[6] Bogoyavlenskii O. I., “New integrable problem of classical mechanics”, Communications in Mathematical Physics, 91 (1984), 255–269 | DOI | MR

[7] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR

[8] Bogoyavlenskii O. I., “Nekotorye integriruemye sluchai uravnenii Eilera”, DAN SSSR, 292:2 (1987), 318–322 | MR | Zbl

[9] Bogoyavlenskii O. I., Oprokidyvayuschiesya solitony. Nelineinye integriruemye uravneniya, Nauka, M., 1991

[10] Bogoyavlenskii O. I., “Uravneniya Eilera na konechnomernykh koalgebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, UMN, 47:1 (1992), 107–146 | MR | Zbl

[11] Krishnaprasad P. S., Marsden J. E., “Hamiltonian structures and stability for rigid bodies with flexible attachments”, Archive for Rational Mechanics and Analysis, 98:1 (1981), 71–93 | DOI | MR

[12] Krishnaprasad P. S., “Eulerian many-body Problems”, Contemporary Mathematics, 97 (1989), 189–208 | MR

[13] Leimanis E., The general problem of the motion of coupled rigid bodies about fixed point, Springer Tracts in Natural Philosophy, 7, Springer-Verlag, Berlin, Heidelberg, New York, 1965

[14] Levis V. R., Marsden J. E., Ratiu T. S., Simo J. C., “Normalizing connections and the energy-momentum method”, Proceedings of the CUM Workshop on Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, CRM, Montreal, 1990 | MR

[15] Marsden I. E., Simo J. C, Lewis D., Posbergh T. A., “Block diagonalization and the energy-momentum method”, Contemporary Mathematics, 97 (1989), 297–314 | MR

[16] Marsden J. E., Montgomery R., Ratiu T., Reduction, symmetry and phases in mechanics, Memoirs of the American Mathematical Society, 88, AMS, Providence, Rhode Island, 1990, no. 436 | MR

[17] Modi V. J., Suleman A., “System modes and dynamics of the proposed space station type configurations”, Nonlinear Dynamics, 1 (1990), 379–400 | DOI

[18] Modi V. J., Ng A., Suleman A., Morita Y, Dynamics of orbiting multibody systems a formulation with application, AIAA-91-0998, 1991

[19] Moser J., “Various aspects of integrable Hamiltonian systems”, Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progress in Mathematics, 8, Birkhauser, 1980, 233–289 | MR

[20] Neumann C., “De problemate quodam mechanico, quod ad primam integralium ultraellipticorum elassem revocatur”, J. Reine Angew. Math., 56 (1958), 46–83

[21] Patrick G. W., “The dynamics of two coupled rigid bodies in three space”, Contemporary Mathematics, 97 (1989), 315–336 | MR

[22] Patrick G. W., Nonlinear stability of coupled rigid bodies, Ph. D. Dissertation, Department of Mathematics, University of California, Berkeley, 1990

[23] Routh E. J., Dynamics of a system of rigid bodies, Dover Publications, Inc. New York, 1960 | MR

[24] Sarychev B. A., “Issledovanie dinamiki sistemy gravitatsionnoi stabilizatsii”, Iskusstvennye Sputniki Zemli, 16, AN SSSR, M., 1963, 10–33

[25] Sreenath N., Oh Y. G., Krishnaprasad P. S., Marsden J. E., “The dynamics of coupled planar rigid bodies. Part I: Reduction, equilibria and stability”, Dynamics and Stability of Systems, 3 (1988), 25–49 | MR | Zbl

[26] Wittenburg J., Dynamics of systems of rigid bodies, B. G. Teubner, Stuttgart, 1977 | MR | Zbl

[27] Wittenburg J., Lilov L., “Relative equilibrium positions and their stability for a multibody satellite in a circular orbit”, Ingenieur-Archiv, 44 (1975), 269–279 | DOI | MR | Zbl

[28] Krishnaprasad P. S., Berenstein C. A., “On the equilibria of rigid spacecraft with rotors”, Systems {} Control Letters, 4 (1984), 157–163 | DOI | MR | Zbl