Unboundedness of a $p$-adic Gaussian distribution
Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 367-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

The intensive development of mathematical physics over non-Archimedean number fields has led to the emergence of many new mathematical constructions. In particular, a $p$-adic Gaussian distribution was introduced that lies at the basis of $p$-adic quantum mechanics with $p$-adic-valued functions. In this paper it is proved that, in contrast to the real theory, a Gaussian distribution in the $p$-adic case is not a measure, and the corresponding linear functional is unbounded on the space of continuous functions.
@article{IM2_1993_41_2_a9,
     author = {A. Yu. Khrennikov and M. Endo},
     title = {Unboundedness of a $p$-adic {Gaussian} distribution},
     journal = {Izvestiya. Mathematics },
     pages = {367--375},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a9/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
AU  - M. Endo
TI  - Unboundedness of a $p$-adic Gaussian distribution
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 367
EP  - 375
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a9/
LA  - en
ID  - IM2_1993_41_2_a9
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%A M. Endo
%T Unboundedness of a $p$-adic Gaussian distribution
%J Izvestiya. Mathematics 
%D 1993
%P 367-375
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a9/
%G en
%F IM2_1993_41_2_a9
A. Yu. Khrennikov; M. Endo. Unboundedness of a $p$-adic Gaussian distribution. Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 367-375. http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a9/

[1] Vladimirov V. S., Volovich I. V., “Superanaliz. 1: Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | MR | Zbl

[2] Volovich I. V., “$p$-adic string”, Class. Quant. Gravity, 59:1 (1987), 83–87 | DOI | MR

[3] Volovich I. V., Number theory as the ultimate physical theory, Preprint TH. 4781/87, CERN, Geneva, 1987

[4] Arefeva I. Ya., Dragovic B., Volovich I. V., “On the $p$-adic summability of the anharmonic oscillator”, Phys. Lett., 200 (1988), 512–514 | DOI | MR

[5] Frampton P. H., “Okada Y.”, Phys. Rev. Lett., 60 (1988), 484–486 | DOI | MR

[6] Arefeva I. Ya., Dragovic B., Volovich I. V., “Open and closed $p$-adic strings and quadratic extensions of number fields”, Phys. Lett., 212 (1988), 283–291 | DOI | MR

[7] Gervais J.-L., “$p$-adic analyticity and Virasoro algebras for confornal theories in more than two dimensions”, Phys. Lett., 201 (1988), 306–310 | DOI | MR

[8] Dragovic B., “$p$-adic perturbation series and adelic summability”, Phys. Lett, 256 (1991), 392–396 | DOI | MR

[9] Dragovic B., On factorial perturbation series, Preprint IF-91-11. Sept., Beograd, 1991

[10] Khrennikov A. Yu., “Predstavleniya Shredingera i Bargmana–Foka v nearkhimedovoi kvantovoi mekhanike”, DAN SSSR, 313:2 (1990), 325–329 | MR | Zbl

[11] Khrennikov A. Yu., “Predstavlenie vtorichnogo kvantovaniya nad nearkhimedovymi chislovymi polyami”, DAN SSSR, 314:6 (1990), 1380–1384 | Zbl

[12] Khrennikov A. Yu., “Kvantovaya mekhanika nad rasshireniyami Galua chislovykh polei”, DAN SSSR, 315:4 (1990), 860–864

[13] Khrennikov A. Yu., “$p$-adic quantum mechanics with $p$-adic valued functions”, Math. Phys., 32:4 (1991), 932–937 | DOI | MR | Zbl

[14] Khrennikov A. Yu., “Matematicheskie metody nearkhimedovoi fiziki”, UMN, 45:4 (1990), 79–110 | MR | Zbl

[15] Khrennikov A. Yu., “Obobschennye funktsii i gaussovskie kontinualnye integraly po nearkhimedovym funktsionalnym prostranstvam”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 780–814 | MR | Zbl

[16] Iwasawa K., Lectures on $p$-adic $L$-functions, Princeton Univ. Press, Princeton, 1972 | MR | Zbl

[17] Lang S., Cyclotomic fields, Springer-Verlag, N.Y., 1978 | MR

[18] Schikhof W. H., Ultrametric calculus, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[19] Endo M., “An extension of $p$-adic integration”, Comm. Math. Univ. St. Pauli, 32:1 (1983), 109–130 | MR | Zbl

[20] Endo M., “The kernel of the Iwasawa homomorphism”, Comm. Math. Univ. St. Pauli, 32:2 (1983), 217–224 | MR | Zbl

[21] Khrennikov A. Yu., “Obobschennye funktsii na nearkhimedovom superprostranstve”, Izv. AN SSSR. Ser. matem., 55:6 (1991), 1257–1286

[22] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1988 | Zbl