Unboundedness of a $p$-adic Gaussian distribution
Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 367-375

Voir la notice de l'article provenant de la source Math-Net.Ru

The intensive development of mathematical physics over non-Archimedean number fields has led to the emergence of many new mathematical constructions. In particular, a $p$-adic Gaussian distribution was introduced that lies at the basis of $p$-adic quantum mechanics with $p$-adic-valued functions. In this paper it is proved that, in contrast to the real theory, a Gaussian distribution in the $p$-adic case is not a measure, and the corresponding linear functional is unbounded on the space of continuous functions.
@article{IM2_1993_41_2_a9,
     author = {A. Yu. Khrennikov and M. Endo},
     title = {Unboundedness of a $p$-adic {Gaussian} distribution},
     journal = {Izvestiya. Mathematics },
     pages = {367--375},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a9/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
AU  - M. Endo
TI  - Unboundedness of a $p$-adic Gaussian distribution
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 367
EP  - 375
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a9/
LA  - en
ID  - IM2_1993_41_2_a9
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%A M. Endo
%T Unboundedness of a $p$-adic Gaussian distribution
%J Izvestiya. Mathematics 
%D 1993
%P 367-375
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a9/
%G en
%F IM2_1993_41_2_a9
A. Yu. Khrennikov; M. Endo. Unboundedness of a $p$-adic Gaussian distribution. Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 367-375. http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a9/