On the Lefschetz theorem for the complement of a curve in $\mathbf P^2$
Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 169-184
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\bar E$ be an irreducible plane curve over the field $\mathbf C$ of complex numbers, let $\widetilde\nu\colon\widetilde E\to E\subset\mathbf P^2$ be the normalization morphism, and let $\bar D$ be an arbitrary curve in $\mathbf P^2$ such that $\bar E\not\subset\bar D$. The main result of this paper says that if $\bar E$ and $\bar D$ intersect transversely, then $\widetilde\nu_*\colon\pi_1(\widetilde E\setminus\widetilde\nu^{-1}(\bar E\cap\bar D))\to\pi(\mathbf P^2\setminus\bar D)$ is an epimorphism.
@article{IM2_1993_41_1_a8,
author = {Vik. S. Kulikov},
title = {On the {Lefschetz} theorem for the complement of a curve in $\mathbf P^2$},
journal = {Izvestiya. Mathematics },
pages = {169--184},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a8/}
}
Vik. S. Kulikov. On the Lefschetz theorem for the complement of a curve in $\mathbf P^2$. Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 169-184. http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a8/