Holomorphic extension of $CR$-functions with singularities on a generic manifold
Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 623-635
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be a smooth generic manifold with nonzero Levi form in a domain of holomorphy $\Omega\subset\mathbf C^n$ with $n>1$. Let $\Omega_\Gamma\subset\Omega$ be the domain adjacent to $\Gamma$ to which all $CR$-functions defined on $\Gamma$ extend holomorphically. Let $K=\widehat K_\Omega\subset\Omega$ be a holomorphically convex compact set. We show that every $CR$-function on $\Gamma\setminus K$ of class $\mathscr L_{\text{loc}}^1(\Gamma\setminus K)$ extends holomorphically to $\Omega_\Gamma\setminus K$. When $n=2$ the manifold $\Gamma$ must be closed, i.e., $\partial\Gamma=0$. As a corollary we deduce a result on the removal of singularities of $CR$-functions of finite order of growth near $K$. The proof uses the integral representation of Airapetyan and Khenkin.
@article{IM2_1993_40_3_a7,
author = {A. M. Kytmanov and T. N. Nikitina},
title = {Holomorphic extension of $CR$-functions with singularities on a generic manifold},
journal = {Izvestiya. Mathematics },
pages = {623--635},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a7/}
}
TY - JOUR AU - A. M. Kytmanov AU - T. N. Nikitina TI - Holomorphic extension of $CR$-functions with singularities on a generic manifold JO - Izvestiya. Mathematics PY - 1993 SP - 623 EP - 635 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a7/ LA - en ID - IM2_1993_40_3_a7 ER -
A. M. Kytmanov; T. N. Nikitina. Holomorphic extension of $CR$-functions with singularities on a generic manifold. Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 623-635. http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a7/