Holomorphic extension of $CR$-functions with singularities on a generic manifold
Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 623-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a smooth generic manifold with nonzero Levi form in a domain of holomorphy $\Omega\subset\mathbf C^n$ with $n>1$. Let $\Omega_\Gamma\subset\Omega$ be the domain adjacent to $\Gamma$ to which all $CR$-functions defined on $\Gamma$ extend holomorphically. Let $K=\widehat K_\Omega\subset\Omega$ be a holomorphically convex compact set. We show that every $CR$-function on $\Gamma\setminus K$ of class $\mathscr L_{\text{loc}}^1(\Gamma\setminus K)$ extends holomorphically to $\Omega_\Gamma\setminus K$. When $n=2$ the manifold $\Gamma$ must be closed, i.e., $\partial\Gamma=0$. As a corollary we deduce a result on the removal of singularities of $CR$-functions of finite order of growth near $K$. The proof uses the integral representation of Airapetyan and Khenkin.
@article{IM2_1993_40_3_a7,
     author = {A. M. Kytmanov and T. N. Nikitina},
     title = {Holomorphic extension of $CR$-functions with singularities on a generic manifold},
     journal = {Izvestiya. Mathematics },
     pages = {623--635},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a7/}
}
TY  - JOUR
AU  - A. M. Kytmanov
AU  - T. N. Nikitina
TI  - Holomorphic extension of $CR$-functions with singularities on a generic manifold
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 623
EP  - 635
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a7/
LA  - en
ID  - IM2_1993_40_3_a7
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%A T. N. Nikitina
%T Holomorphic extension of $CR$-functions with singularities on a generic manifold
%J Izvestiya. Mathematics 
%D 1993
%P 623-635
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a7/
%G en
%F IM2_1993_40_3_a7
A. M. Kytmanov; T. N. Nikitina. Holomorphic extension of $CR$-functions with singularities on a generic manifold. Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 623-635. http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a7/

[1] Lupacciolu G., “A theorem on holomorphic extension of $CR$-functions”, Pasific J. Math., 124:1 (1986), 177–191 | MR | Zbl

[2] Stout E. L., Removable singularities for the boundary values of holomorphic functions, Preprint Univ. Washington, 1989, 21 pp. | MR

[3] Kytmanov A. M., “Golomorfnoe prodolzhenie $CR$-funktsii s osobennostyami na giperpoverkhnosti”, Izv. AN SSSR. Ser. matem., 54:6 (199), 1320–1329

[4] Chirka E. M., “Analiticheskoe predstavlenie $CR$-funktsii”, Matem. sb., 98:4 (1975), 591–623 | MR | Zbl

[5] Baouendi M. S., Rothshild L. P., “Extension of holomorphic functions in generic wedges and their wave front sets”, Commun. Part. Differ. Equat., 13:11 (1988), 1441–1466 | DOI | MR | Zbl

[6] Kytmanov A. M., “O stiranii osobennostei integriruemykh $CR$-funktsii”, Matem. sb., 136:2 (1988), 178–186 | MR | Zbl

[7] Chirka E. M. (ed.), Nekotorye nereshennye zadachi mnogomernogo kompleksnogo analiza, Preprint, No 41M, Institut fiziki SO AN SSSR, Krasnoyarsk, 1987, 1–38

[8] Airapetyan R. A., Khenkin G. M., “Integralnye predstavleniya differentsialnykh form na mnogoobraziyakh Koshi–Rimana i teoriya $CR$-funktsii”, UMN, 39:3 (1984), 39–106 | MR | Zbl

[9] Khenkin G. M., “Metod integralnykh predstavlenii v kompleksnom analize”, Itogi nauki i tekhniki. Sovr. problemy matem. (fundamentalnye napravleniya), 7, VINITI, M., 1985, 23–124 | MR

[10] Baouendi M. S., Treves F., “A property of the functions and distributions annihilated by a locally integrable system of complex vector fields”, Ann. Math., 113:2 (1981), 341–421 | DOI | MR

[11] Kytmanov A. M., “Golomorfnoe prodolzhenie integriruemykh $CR$-funktsii s chasti granitsy oblasti”, Mat. zametki, 48:2 (1990), 64–71 | MR | Zbl

[12] Kytmanov A. M., “Ustranenie osobennostei $CR$-funktsii, imeyuschikh konechnyi poryadok rosta”, Matem. zametki, 1992

[13] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[14] Malgranzh B., Idealy differentsiruemykh funktsii, Mir, M., 1968