On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere
Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 565-590

Voir la notice de l'article provenant de la source Math-Net.Ru

The author gives a complete proof of the Lyusternik–Shnirel'man theorem that on each smooth Riemannian manifold homeomorphic to the 2-sphere there exist at least three distinct nonselfintersecting closed geodesics (the proof by Lyusternik and Shnirel'man contains substantial gaps).
@article{IM2_1993_40_3_a4,
     author = {I. A. Taimanov},
     title = {On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere},
     journal = {Izvestiya. Mathematics },
     pages = {565--590},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a4/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 565
EP  - 590
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a4/
LA  - en
ID  - IM2_1993_40_3_a4
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere
%J Izvestiya. Mathematics 
%D 1993
%P 565-590
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a4/
%G en
%F IM2_1993_40_3_a4
I. A. Taimanov. On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere. Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 565-590. http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a4/