On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere
Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 565-590.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author gives a complete proof of the Lyusternik–Shnirel'man theorem that on each smooth Riemannian manifold homeomorphic to the 2-sphere there exist at least three distinct nonselfintersecting closed geodesics (the proof by Lyusternik and Shnirel'man contains substantial gaps).
@article{IM2_1993_40_3_a4,
     author = {I. A. Taimanov},
     title = {On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere},
     journal = {Izvestiya. Mathematics },
     pages = {565--590},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a4/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 565
EP  - 590
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a4/
LA  - en
ID  - IM2_1993_40_3_a4
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere
%J Izvestiya. Mathematics 
%D 1993
%P 565-590
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a4/
%G en
%F IM2_1993_40_3_a4
I. A. Taimanov. On~the~existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere. Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 565-590. http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a4/

[1] Lusternik L., Shnirelman L., “Sur le probleme de trois geodesiques fermees sur les surfaces de genre $0$”, C.R. Acad. Sci. Paris, 189 (1929), 269–271 | Zbl

[2] Lyusternik L. A., Shnirelman L. G., Topologicheskie metody v variatsionnykh zadachakh, Tr. Nauchno-issledovatelskogo in-ta matematiki i mekhaniki pri 1-om MGU, GITTL, M., 1930

[3] Lyusternik L. A., Shnirelman L. G., “Topologicheskie metody v variatsionnykh zadachakh i ikh prilozheniya k differentsialnoi geometrii poverkhnostei”, UMN, 2:1 (1947), 166–217 | MR

[4] Lyusternik L. A., Topologiya funktsionalnykh prostranstv i variatsionnoe ischislenie v tselom, Tr. MIAN, 19, 1947 | MR | Zbl

[5] Ballmann W., Tkorbergsson G., Ziller W., “Existence of closed geodesies on positively curved manifolds”, J. of Diff. Geometry, 18 (1983), 221–252 | MR | Zbl

[6] Jost J., “A nonparametric proof of the theorem of Lusternik and Schnirelman”, Archiv der Mathematik, 53 (1989), 497–509 | DOI | MR | Zbl

[7] Grayson M. A., “Shortening embedded curves”, Annals of Mathematics, 129 (1989), 71–111 | DOI | MR | Zbl

[8] Klingenberg V., Lektsii o zamknutykh geodezicheskikh, Mir, M., 1982 | MR | Zbl

[9] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[10] Ballmann W., “Der Satz von Lusternik und Schnirelmann”, Bonner Mathematische Schriften, 1978, no. 102, 1–25 | MR | Zbl

[11] Hass J., Scott P., Schortening curves on surfaces, Preprint, 1991