Abstract properties of $S$-arithmetic groups and the congruence s problem
Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 455-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $G$ is a simple and simply connected algebraic group over an algebraic number field $K$ and $S$ is a finite set of valuations of $K$ containing all Archimedean valuations. This paper is a study of the connections between abstract properties of the $S$-arithmetic subgroup $\mathbf\Gamma=G_{O(S)}$ and the congruence property, i.e. the finiteness of the corresponding congruence kernel $C=C^S(G)$. In particular, it is shown that if the profinite completion $\Delta=\widehat\Gamma$ satisfies condition $(\mathbf {PG})'$, (i.e., for any integer $n>0$ and any prime $p$ there exist $c$ and $k$ such that $|\Delta/\Delta^{np^\alpha}|\leqslant cp^{k\alpha}$ for all $\alpha>0$, then $C$ is finite. Examples are given demonstrating the possibility of effectively verifying $(\mathbf {PG})'$ .
@article{IM2_1993_40_3_a0,
     author = {V. P. Platonov and A. S. Rapinchuk},
     title = {Abstract properties of $S$-arithmetic groups and the congruence s problem},
     journal = {Izvestiya. Mathematics },
     pages = {455--476},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a0/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - A. S. Rapinchuk
TI  - Abstract properties of $S$-arithmetic groups and the congruence s problem
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 455
EP  - 476
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a0/
LA  - en
ID  - IM2_1993_40_3_a0
ER  - 
%0 Journal Article
%A V. P. Platonov
%A A. S. Rapinchuk
%T Abstract properties of $S$-arithmetic groups and the congruence s problem
%J Izvestiya. Mathematics 
%D 1993
%P 455-476
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a0/
%G en
%F IM2_1993_40_3_a0
V. P. Platonov; A. S. Rapinchuk. Abstract properties of $S$-arithmetic groups and the congruence s problem. Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 455-476. http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a0/

[1] Vase X., Milnor Dzh., Serr Zh.-P., “Reshenie kongruents-problemy dlya $SL_n$ ($n\geqslant3$) i $Sp_{2n}$ ($n\geqslant2$)”, Matematika, 14:6 (1970), 64–148; 15:1 (1971), 44–60

[2] Zelmanov E. I., “Reshenie oslablennoi problemy Bernsaida dlya grupp nechetnogo pokazatelya”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 42–59 | MR

[3] Margulis G. A., “Konechnost faktorgrupp diskretnykh grupp”, Funkts. analiz i ego prilozh., 13:3 (1979), 28–39 | MR | Zbl

[4] Melnikov O. V., “Normalnye deliteli svobodnykh prokonechnykh grupp”, Izv. AN SSSR. Ser. matem., 42:1 (1978), 3–25 | MR

[5] Platonov V. P., “Problema silnoi approksimatsii i gipoteza Kvezera–Titsa dlya algebraicheskikh grupp”, Izv. AN SSSR. Ser. matem., 33:6 (1969), 1211–1219 | MR | Zbl

[6] Platonov V. P., “Arifmeticheskie i strukturnye problemy v lineinykh algebraicheskikh gruppakh” (Vancouver, 1974), Rros. Intern. Congr. Math., 1 (1975), 471–476 | MR | Zbl

[7] Platonov V. P., “Arifmeticheskaya teoriya algebraicheskikh grupp”, UMN, 37:3 (1982), 3–54 | MR | Zbl

[8] Platonov V. P., Rapinchuk A. S., Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991 | MR

[9] Platonov V. P., Rapinchuk A. S., “Abstraktnye kharakterizatsii arifmeticheskikh grupp s kongruents-svoistvom”, DAN SSSR, 319:6 (1991), 1322–1327 | MR | Zbl

[10] Rapinchuk A. S., “Kongruents-problema dlya arifmeticheskikh grupp konechnoi shiriny”, DAN SSSR, 314:6 (1990), 1327–1331 | Zbl

[11] Serr Zh.-P., Kogomogologii Galua, Mir, M., 1968 | MR

[12] Serr Zh.-P., “Problema kongruents-podgrupp dlya $SL_2$”, Matematika, 15:6 (1971), 12–45 | Zbl

[13] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[14] Tavgen O. I., “Ogranichennaya porozhdaemost grupp Shevalle nad koltsami $S$-tselykh algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 1990:1, 97–122 | MR

[15] Carter D., Keller G., “Bounded elementary generation of $SL_n(O)$”, Amer. J. Math., 105:3 (1983), 673–687 | DOI | MR | Zbl

[16] Deodhar V., “On central extensions of rational points of algebraic groups”, Amer. J. Math., 100:2 (1978), 303–386 | DOI | MR | Zbl

[17] Dixon J. D. du Sautoy M. P. F., Mann A., Segal D., Analytic pro-$p$ Groups, Cambridge Univ. Press, 1991 | MR | Zbl

[18] Lazard M., “Groupes analytiques $p$-adiques”, Inst. Hautes Études Sci. Publ. Math., 26, 1965, 389–603 | MR | Zbl

[19] Matsumoto H., “Sur les sous-groupes arithmètiques de groupes semi-simples deployées”, Ann. Sci. ENS, 2:1 (1969), 1–62 | MR | Zbl

[20] Prasad G., “Elementary proof of a theorem of Bruhat–Tits–Rousseau and of a theorem of Tits”, Bull. Sc. Math. France, 110:2 (1982), 197–202 | MR | Zbl

[21] Prasad G., Raghunathan M. S., “On the congruence subgroup problem: Determination of the metaplectic kernel”, Invent. Math., 71:1 (1983), 21–42 | DOI | MR | Zbl

[22] Prasad G., Raghunathan M. S., “Topological central extensions of semi-simple groups over local fields”, Ann. Math., 119:1,2 (1984), 143–268 | DOI | MR | Zbl

[23] Raghunathan M. S., “On the congruence subgroup problem”, Inst. Hautes Études Sci. Publ. Math., 46, 1976, 107–161 | MR | Zbl

[24] Rapinchuk A. S., Combinatorial theory of arithmetic groups, Preprint, No 20(420), In-t matematiki AN BSSR, Minsk, 1990

[25] Rapinchuk A. S., Topics in algebra, Banach Center Publ., 26, 1990, part 2 | MR | Zbl

[26] Smith J. H., “On products of profinite groups”, Ill. J. Math., 13:4 (1969), 680–688 | MR | Zbl

[27] Tits J., “Systèmes générateurs de groupes de congruence”, C.R. Acad. Sc., 283:9 (1976), 693–695 | MR