Abstract properties of $S$-arithmetic groups and the congruence s problem
Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 455-476

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $G$ is a simple and simply connected algebraic group over an algebraic number field $K$ and $S$ is a finite set of valuations of $K$ containing all Archimedean valuations. This paper is a study of the connections between abstract properties of the $S$-arithmetic subgroup $\mathbf\Gamma=G_{O(S)}$ and the congruence property, i.e. the finiteness of the corresponding congruence kernel $C=C^S(G)$. In particular, it is shown that if the profinite completion $\Delta=\widehat\Gamma$ satisfies condition $(\mathbf {PG})'$, (i.e., for any integer $n>0$ and any prime $p$ there exist $c$ and $k$ such that $|\Delta/\Delta^{np^\alpha}|\leqslant cp^{k\alpha}$ for all $\alpha>0$, then $C$ is finite. Examples are given demonstrating the possibility of effectively verifying $(\mathbf {PG})'$ .
@article{IM2_1993_40_3_a0,
     author = {V. P. Platonov and A. S. Rapinchuk},
     title = {Abstract properties of $S$-arithmetic groups and the congruence s problem},
     journal = {Izvestiya. Mathematics },
     pages = {455--476},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a0/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - A. S. Rapinchuk
TI  - Abstract properties of $S$-arithmetic groups and the congruence s problem
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 455
EP  - 476
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a0/
LA  - en
ID  - IM2_1993_40_3_a0
ER  - 
%0 Journal Article
%A V. P. Platonov
%A A. S. Rapinchuk
%T Abstract properties of $S$-arithmetic groups and the congruence s problem
%J Izvestiya. Mathematics 
%D 1993
%P 455-476
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a0/
%G en
%F IM2_1993_40_3_a0
V. P. Platonov; A. S. Rapinchuk. Abstract properties of $S$-arithmetic groups and the congruence s problem. Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 455-476. http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a0/