The Gordon preimage of an Aleksandrov space as an enclosed covering
Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 405-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the universally measurable extension $C\rightarrowtail UM$ of the ring $C$ of continuous functions on a space $T$ the Gordon preimage $T\twoheadleftarrow g T$ is considered, which is the preimage of the maximal ideals of this extension. The new topological structure of Aleksandrov spaces with a cover and the concept of an enclosed covering of graduated type for these spaces are introduced. With the help of these concepts a topological characterization is given for the Gordon preimage $T\twoheadleftarrow gT$ as an enclosed covering of a certain type of space $T$ (Theorem 1). For comparison, a description of the hyper-Stonean preimage $T\twoheadleftarrow hT$ is presented without proof; the latter is the preimage of the maximal ideals of the Arens second dual extension $C\rightarrowtail C''$ (Theorem 2).
@article{IM2_1993_40_2_a4,
     author = {V. K. Zakharov},
     title = {The {Gordon} preimage of an {Aleksandrov} space as an enclosed covering},
     journal = {Izvestiya. Mathematics },
     pages = {405--424},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a4/}
}
TY  - JOUR
AU  - V. K. Zakharov
TI  - The Gordon preimage of an Aleksandrov space as an enclosed covering
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 405
EP  - 424
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a4/
LA  - en
ID  - IM2_1993_40_2_a4
ER  - 
%0 Journal Article
%A V. K. Zakharov
%T The Gordon preimage of an Aleksandrov space as an enclosed covering
%J Izvestiya. Mathematics 
%D 1993
%P 405-424
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a4/
%G en
%F IM2_1993_40_2_a4
V. K. Zakharov. The Gordon preimage of an Aleksandrov space as an enclosed covering. Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 405-424. http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a4/

[1] Kuratovskii K., Topologiya, t. 1, Mir, M., 1966 | MR

[2] Jacobs K., Measure and integral, Academic Press, New York, 1978 | MR

[3] Scmadeni Z., Banach spaces of continuons functions, Polish. Sci. Publ., Warszawa, 1971

[4] Burbaki N., Integrirovanie, Gl. III–V, IX, Nauka, M., 197

[5] Arens R. F., “Operations induced in function classes”, Monatsh. Math., 55:1 (1951), 1–19 | DOI | MR | Zbl

[6] Aleksandrov A. D., “Additive functions inabstract spaces, I–III”, Matem. sb., 8 (1940), 303–348 ; 9 (1941), 563–628 ; 13 (1943), 169–238 | MR | MR

[7] Fine N. J., Gillman L., Lambek J., Rings of quotients of rings of functions, McGill Univ. Press, Montreal, 1965 | MR

[8] Zakharov V. K., “Funktsionalnaya kharakterizatsiya absolyuta, vektornye reshetki funktsii so svoistvom Bera i kvazinormalnykh funktsii i moduli chastnykh nepreryvnykh funktsii”, Tr. Mosk. matem. ob-va, 45, 1982, 68–104 | MR

[9] Ponomarev V. I., “Ob absolyute topologicheskogo prostranstva”, DAN SSSR, 153:5 (1963), 1013–1016 | MR | Zbl

[10] Zakharov V. I., Koldunov A. V., “Sekventsialnyi absolyut i ego kharakterizatsii”, DAN SSSR, 253:2 (1980), 280–284 | MR | Zbl

[11] Dashiell F., Hager A., Hennksen M., “Order–Cauchy completions of rings and vector lattices of continuous functions”, Can. J. Math., 32:3 (1980), 657–685 | MR | Zbl

[12] Zaharov V. K., “On functions connected with sequential absolute. Cantor completion and classical ring of quotients”, Per. Math. Hung., 19:2 (1988), 113–133 | DOI | MR

[13] Flachsmeyer J., “TopoJogization of Boolean aleebras”, Proceedings of the Forth Prague Topological Symposium (Prague, 1976), Lecture Notes in Math., 609, 1977, 81–97 | MR | Zbl

[14] Zakharov V. K., “Giperstounov absolyut vpolne regulyarnogo prostranstva”, DAN SSSR, 267:2 (1982), 280–283 | MR | Zbl

[15] Zaharov V. K., “Some perfect proimages connected with extensions of the family of continuons functions”, Topology and Applications, Coll. Math. Soc. János Bolyai, 401, Eger, Hungary, 1983, 703–728 | MR

[16] Zaharon V. K., “Hyperstonean cover and second dual extensions”, Acta Math. Hung., 51:1,2 (1988), 125–149 | DOI | MR

[17] Zakharov V. K., “Topologicheskie proobrazy, sootvetstvuyuschie klassicheskim rasshireniyam koltsa nepreryvnykh funktsii”, Vesti. Mosk. un-ta. Ser. 1, 1990, no. 1, 44–47 | Zbl

[18] Zakharov V. K., “$cr$-Obolochki koltsa nepreryvnykh funktsii”, DAN SSSR, 294:3 (1987), 531–534 | MR | Zbl

[19] Gordon H., “The maximal ideal space of a ring of measurable functions”, Amer. J. Math., 88:4 (1966), 827–843 | DOI | MR | Zbl

[20] Zaharov V. K., “Lebesque cover and Lebesquean extension”, Studia Sci. Math. Hung., 23 (1988), 343–368 | MR | Zbl

[21] Deljosse J.-P., “Caracterizations d'anneaux de fonctions continues”, Ann. Soc. Sci. Bruxelles. Ser. I., 89:3 (1975), 364–368 | MR

[22] Keitcy J. L., “Measures in Booleom algebras”, Pacif. J. Math., 9:4 (1959), 1165–1177

[23] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR

[24] Kaplan S., The bidual of $C(x)$, I, Math. Studies, North-Holland Publ. Comp., Amsterdam, 1984 | Zbl

[25] Zakharov V. K., “Universalno izmerimoe rasshirenie i rasshirenie Arensa banakhovoi algebry nepreryvnykh funktsii”, Funkts. analiz i ego prilozh., 24:2 (1990), 83–84 | MR | Zbl