Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1993_40_2_a1, author = {V. Ya. Pidstrigach and A. N. Tyurin}, title = {Invariants of the smooth structure of an algebraic surface arising from the {Dirac} operator}, journal = {Izvestiya. Mathematics }, pages = {267--351}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {1993}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/} }
TY - JOUR AU - V. Ya. Pidstrigach AU - A. N. Tyurin TI - Invariants of the smooth structure of an algebraic surface arising from the Dirac operator JO - Izvestiya. Mathematics PY - 1993 SP - 267 EP - 351 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/ LA - en ID - IM2_1993_40_2_a1 ER -
V. Ya. Pidstrigach; A. N. Tyurin. Invariants of the smooth structure of an algebraic surface arising from the Dirac operator. Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 267-351. http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/
[1] Altman A., Kleiman S., “Compactifying the Picard schemes”, Adv. in Math., 35 (1980), 50–112 | DOI | MR | Zbl
[2] Aronszajin N., “A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of the second order”, J. de Mathematiques Pures et Appl., 36:9 (1957), 235–249 | MR
[3] Donaldson S., “The orientation of Yang–Mills moduli spaces and $4$-manifold topology”, J. of Diff. Geom., 26 (1987), 397–428 | MR | Zbl
[4] Donaldson S., “Polynomial invariants for smooth $4$-manifolds”, Topology, 29:3 (1990), 257–317 | DOI | MR
[5] Donaldson S., Differential topology and complex variables, Preprint of Arbeitstagnung, 1990
[6] Donaldson S., Kronheimer P., The Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990 | MR | Zbl
[7] Ellingsrud G., Another proof of the irreducibility of the punctual Hilbert schemes of a smooth surface, Preprint of Bergen Univ., 1991 | Zbl
[8] Kotschik D., “On manifolds homeomorphic to $\mathbf{CP}^2\#8\overline{\mathbf{CP}}^2$”, Invent. Math., 95 (1989), 591–600 | DOI | MR
[9] Kotschik D., $SO(3)$ – invariants for $4$-manifolds with $b_2^+=1$, Preprint, Cambridge Univ., 1990
[10] Knezer M., “Klassen zahlen definiter quadratischer Formen”, Arch. of Math., 3:4 (1957), 241–251 | DOI
[11] Mandelbaum H., “Four-dimentional topology: an introduction”, Bull. Amer. Math. Soc. (N.S.), 2 (1980), 1–159 | DOI | MR | Zbl
[12] Qin Zhenbo, Complex structures on certain differentiable $4$-manifolds, Preprint of McMaster Univ., 1991
[13] Pidstrigach V. Ya., “Deformatsii instantonnykh plenok”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 318–338 | MR | Zbl
[14] Reid M., A conjecture on special clusters and application, Preprint MPI, Bonn, 1986
[15] Rudakov A. N. et al., Helices and vector bundles, London Math. Soc. L.N. Ser., 148, 1990 | MR
[16] Cepp Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968
[17] Tikhomirov A. S., Troshina T. A., Starshie klassy Segre standartnykh rassloenii na skhemakh Gilberta, Dep. v VINITI 15.05.1991, No 504-91 Dep., M., 1991
[18] Tyurin A. N., “Algebro-geometricheskie aspekty gladkosti”, UMN, 44:3 (1989), 93–143 | MR | Zbl
[19] Tyurin A. N., “A slight generalisation of the theorem of Mehta–Ramanathan”, L.N. Math., 1479 (1989), 258–272 | DOI | MR
[20] Trurin A. N., “Cycles, curves and vector bundles on an algebraic surface”, Duke Math. J., 54 (1987), 1–26 | DOI | MR
[21] Tyurin A. N., “Simplekticheskie struktury na mnogoobrazii modulei vektornykh rassloenii na algebraicheskoi poverkhnosti s $p_g>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–851 | MR
[22] Tyurin A. N., “The geometry of $1$-special components of moduli spaces of torsion free sheaves on algebraic surfaces”, Proceedings of the Conference “Complex Algebraic Varietes”, Bayreuth, 1990
[23] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988 | MR
[24] Fulgon U., Teoriya peresechenii, Mir, M., 1989 | MR