Invariants of the smooth structure of an algebraic surface arising from the Dirac operator
Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 267-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct invariants of the smooth structure of an algebraic surface in terms of coupled Dirac operators. The invariants allow us to distinguish between del Pezzo surfaces and fake del Pezzo surfaces by their smooth structure.
@article{IM2_1993_40_2_a1,
     author = {V. Ya. Pidstrigach and A. N. Tyurin},
     title = {Invariants of the smooth structure  of an algebraic surface arising from the {Dirac} operator},
     journal = {Izvestiya. Mathematics },
     pages = {267--351},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/}
}
TY  - JOUR
AU  - V. Ya. Pidstrigach
AU  - A. N. Tyurin
TI  - Invariants of the smooth structure  of an algebraic surface arising from the Dirac operator
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 267
EP  - 351
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/
LA  - en
ID  - IM2_1993_40_2_a1
ER  - 
%0 Journal Article
%A V. Ya. Pidstrigach
%A A. N. Tyurin
%T Invariants of the smooth structure  of an algebraic surface arising from the Dirac operator
%J Izvestiya. Mathematics 
%D 1993
%P 267-351
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/
%G en
%F IM2_1993_40_2_a1
V. Ya. Pidstrigach; A. N. Tyurin. Invariants of the smooth structure  of an algebraic surface arising from the Dirac operator. Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 267-351. http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/

[1] Altman A., Kleiman S., “Compactifying the Picard schemes”, Adv. in Math., 35 (1980), 50–112 | DOI | MR | Zbl

[2] Aronszajin N., “A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of the second order”, J. de Mathematiques Pures et Appl., 36:9 (1957), 235–249 | MR

[3] Donaldson S., “The orientation of Yang–Mills moduli spaces and $4$-manifold topology”, J. of Diff. Geom., 26 (1987), 397–428 | MR | Zbl

[4] Donaldson S., “Polynomial invariants for smooth $4$-manifolds”, Topology, 29:3 (1990), 257–317 | DOI | MR

[5] Donaldson S., Differential topology and complex variables, Preprint of Arbeitstagnung, 1990

[6] Donaldson S., Kronheimer P., The Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990 | MR | Zbl

[7] Ellingsrud G., Another proof of the irreducibility of the punctual Hilbert schemes of a smooth surface, Preprint of Bergen Univ., 1991 | Zbl

[8] Kotschik D., “On manifolds homeomorphic to $\mathbf{CP}^2\#8\overline{\mathbf{CP}}^2$”, Invent. Math., 95 (1989), 591–600 | DOI | MR

[9] Kotschik D., $SO(3)$ – invariants for $4$-manifolds with $b_2^+=1$, Preprint, Cambridge Univ., 1990

[10] Knezer M., “Klassen zahlen definiter quadratischer Formen”, Arch. of Math., 3:4 (1957), 241–251 | DOI

[11] Mandelbaum H., “Four-dimentional topology: an introduction”, Bull. Amer. Math. Soc. (N.S.), 2 (1980), 1–159 | DOI | MR | Zbl

[12] Qin Zhenbo, Complex structures on certain differentiable $4$-manifolds, Preprint of McMaster Univ., 1991

[13] Pidstrigach V. Ya., “Deformatsii instantonnykh plenok”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 318–338 | MR | Zbl

[14] Reid M., A conjecture on special clusters and application, Preprint MPI, Bonn, 1986

[15] Rudakov A. N. et al., Helices and vector bundles, London Math. Soc. L.N. Ser., 148, 1990 | MR

[16] Cepp Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[17] Tikhomirov A. S., Troshina T. A., Starshie klassy Segre standartnykh rassloenii na skhemakh Gilberta, Dep. v VINITI 15.05.1991, No 504-91 Dep., M., 1991

[18] Tyurin A. N., “Algebro-geometricheskie aspekty gladkosti”, UMN, 44:3 (1989), 93–143 | MR | Zbl

[19] Tyurin A. N., “A slight generalisation of the theorem of Mehta–Ramanathan”, L.N. Math., 1479 (1989), 258–272 | DOI | MR

[20] Trurin A. N., “Cycles, curves and vector bundles on an algebraic surface”, Duke Math. J., 54 (1987), 1–26 | DOI | MR

[21] Tyurin A. N., “Simplekticheskie struktury na mnogoobrazii modulei vektornykh rassloenii na algebraicheskoi poverkhnosti s $p_g>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–851 | MR

[22] Tyurin A. N., “The geometry of $1$-special components of moduli spaces of torsion free sheaves on algebraic surfaces”, Proceedings of the Conference “Complex Algebraic Varietes”, Bayreuth, 1990

[23] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988 | MR

[24] Fulgon U., Teoriya peresechenii, Mir, M., 1989 | MR