Invariants of the smooth structure of an algebraic surface arising from the Dirac operator
Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 267-351
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct invariants of the smooth structure of an algebraic surface in terms of coupled Dirac operators. The invariants allow us to distinguish between del Pezzo surfaces and fake del Pezzo surfaces by their smooth structure.
@article{IM2_1993_40_2_a1,
author = {V. Ya. Pidstrigach and A. N. Tyurin},
title = {Invariants of the smooth structure of an algebraic surface arising from the {Dirac} operator},
journal = {Izvestiya. Mathematics },
pages = {267--351},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/}
}
TY - JOUR AU - V. Ya. Pidstrigach AU - A. N. Tyurin TI - Invariants of the smooth structure of an algebraic surface arising from the Dirac operator JO - Izvestiya. Mathematics PY - 1993 SP - 267 EP - 351 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/ LA - en ID - IM2_1993_40_2_a1 ER -
V. Ya. Pidstrigach; A. N. Tyurin. Invariants of the smooth structure of an algebraic surface arising from the Dirac operator. Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 267-351. http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/