Invariants of the smooth structure of an algebraic surface arising from the Dirac operator
Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 267-351

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct invariants of the smooth structure of an algebraic surface in terms of coupled Dirac operators. The invariants allow us to distinguish between del Pezzo surfaces and fake del Pezzo surfaces by their smooth structure.
@article{IM2_1993_40_2_a1,
     author = {V. Ya. Pidstrigach and A. N. Tyurin},
     title = {Invariants of the smooth structure  of an algebraic surface arising from the {Dirac} operator},
     journal = {Izvestiya. Mathematics },
     pages = {267--351},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/}
}
TY  - JOUR
AU  - V. Ya. Pidstrigach
AU  - A. N. Tyurin
TI  - Invariants of the smooth structure  of an algebraic surface arising from the Dirac operator
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 267
EP  - 351
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/
LA  - en
ID  - IM2_1993_40_2_a1
ER  - 
%0 Journal Article
%A V. Ya. Pidstrigach
%A A. N. Tyurin
%T Invariants of the smooth structure  of an algebraic surface arising from the Dirac operator
%J Izvestiya. Mathematics 
%D 1993
%P 267-351
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/
%G en
%F IM2_1993_40_2_a1
V. Ya. Pidstrigach; A. N. Tyurin. Invariants of the smooth structure  of an algebraic surface arising from the Dirac operator. Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 267-351. http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a1/