Twistors and $G$-structures
Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 1-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors distinguish a class of twistor spaces $Z=P\times_GS$ that are associated, following Berard-Bergery and Ochiai, with $G$-structures $P$ on even-dimensional manifolds and connections in $P$. It is assumed that $S=G/H$ is a complex totally geodesic submanifold of the affine symmetric space $\operatorname{GL_{2n}}(\mathbf R)/\operatorname{GL_n}(\mathbf C)$. This class includes all the basic examples of twistor spaces fibered over an even-dimensional base. The integrability of the canonical almost complex structure $J_Z$ and the holomorphy of the canonical distribution $\mathscr H_Z$ in $Z$ are studied in terms of some natural $H$-structure with a connection on the manifold $Z$. Some examples are also treated.
@article{IM2_1993_40_1_a0,
     author = {D. V. Alekseevskii and M. M. Graev},
     title = {Twistors and $G$-structures},
     journal = {Izvestiya. Mathematics },
     pages = {1--31},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a0/}
}
TY  - JOUR
AU  - D. V. Alekseevskii
AU  - M. M. Graev
TI  - Twistors and $G$-structures
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 1
EP  - 31
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a0/
LA  - en
ID  - IM2_1993_40_1_a0
ER  - 
%0 Journal Article
%A D. V. Alekseevskii
%A M. M. Graev
%T Twistors and $G$-structures
%J Izvestiya. Mathematics 
%D 1993
%P 1-31
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a0/
%G en
%F IM2_1993_40_1_a0
D. V. Alekseevskii; M. M. Graev. Twistors and $G$-structures. Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 1-31. http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a0/

[1] Penrose R. The twistor programme, Rept. Math. Phys., 12 (1977), 65–76 | DOI | MR

[2] Atiyah M. P., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. Lond., 362A (1978), 425–467 | MR

[3] Eells J., Salamon S, “Constructions twistorielles des applications harmoniques”, C.R. Acad. Sc. Paris. Sér. 1, 296 (1983), 685–687 | MR | Zbl

[4] Tvistory i kalibrovochnye polya, Mir, M., 1983 | MR

[5] Salamon S. M., “Quaternionic Kähler manifolds”, Invent. Math., 67 (1982), 143–171 | DOI | MR | Zbl

[6] Bérard-Bergery L., Ochiai T., “On Some Generalisation of the Construction of Twistor Spaces”, Global Riemannian Geometry, eds. T. J. Willmore, N. J. Hitchin., N.Y., 1984, 52–59 | MR | Zbl

[7] Bryant R. L., “Lie groups and twistor spaces”, Duke Match. J., 52:1 (1985), 223–261 | DOI | MR | Zbl

[8] Salamon S. M., “Differential Geometry of Quaternionic Manifolds”, Ann. Scient. Ec. Norm. Sup. Serie. 4, 11 (198), 31–55 | MR

[9] Besse A., Mnogoobraziya Einshteina, t. 1, 2, Mir, M., 1990 | MR | Zbl

[10] Nitta T., Takeuchi M., “Contact structure on twistor spaces”, J. Match. Soc. Jap., 39:1 (1987), 139–162 | DOI | MR | Zbl

[11] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981

[12] Alekseevskii D. V., “Maksimalno odnorodnye $G$-struktury i filtrovannye algebry Li”, DAN SSSR, 299:3 (1988), 521–525 | MR | Zbl

[13] Sternberg Sh., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[14] Kobayachi S., Nagano T., “On filtred Lie algebras and geometric structures”, J. Match. Mech., 15 (1966), 315–328

[15] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[16] O'Brian N. R., Rawnsley J. H., “Twistor spaces”, Ann. Global Anal. Geom., 3:1 (1985), 25–58 | MR

[17] Rawnsley J. H., “$f$-structures, $f$-twistor spaces and harmonic maps”, Geometry seminar “Luigi Bianchi” 2, 1984, Lecture Notes in Math., 1164, Springer-Verlag, N.Y., 1985, 85–159 | MR

[18] Rawnsley J. H., “Twistor methods”, Lecture Notes in Math., 1263, Springer-Verlag, N.Y., 1987, 97–133 | MR

[19] Eells J., Lemaire L., “Another report on harmonic maps”, Bull. London Math. Soc., 20:5 (1988), 385–524 | DOI | MR | Zbl

[20] Burstall F. E., Rawnsley J. H., Twistor theory for Riemannian symmetric spaces, Lecture Notes in Math., 1424, Springer-Verlag, N.Y., 1990 | MR | Zbl