Twistors and $G$-structures
Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 1-31

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors distinguish a class of twistor spaces $Z=P\times_GS$ that are associated, following Berard-Bergery and Ochiai, with $G$-structures $P$ on even-dimensional manifolds and connections in $P$. It is assumed that $S=G/H$ is a complex totally geodesic submanifold of the affine symmetric space $\operatorname{GL_{2n}}(\mathbf R)/\operatorname{GL_n}(\mathbf C)$. This class includes all the basic examples of twistor spaces fibered over an even-dimensional base. The integrability of the canonical almost complex structure $J_Z$ and the holomorphy of the canonical distribution $\mathscr H_Z$ in $Z$ are studied in terms of some natural $H$-structure with a connection on the manifold $Z$. Some examples are also treated.
@article{IM2_1993_40_1_a0,
     author = {D. V. Alekseevskii and M. M. Graev},
     title = {Twistors and $G$-structures},
     journal = {Izvestiya. Mathematics },
     pages = {1--31},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a0/}
}
TY  - JOUR
AU  - D. V. Alekseevskii
AU  - M. M. Graev
TI  - Twistors and $G$-structures
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 1
EP  - 31
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a0/
LA  - en
ID  - IM2_1993_40_1_a0
ER  - 
%0 Journal Article
%A D. V. Alekseevskii
%A M. M. Graev
%T Twistors and $G$-structures
%J Izvestiya. Mathematics 
%D 1993
%P 1-31
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a0/
%G en
%F IM2_1993_40_1_a0
D. V. Alekseevskii; M. M. Graev. Twistors and $G$-structures. Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 1-31. http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a0/