Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in $\mathbf C^2$
Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1151-1187.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that there exists a Levi-flat surface in $\mathbf C^2$ with boundary on a given two-dimensional sphere that lies in the boundary of a strictly pseudoconvex domain and is totally real everywhere except at a finite number of elliptic and hyperbolic points.
@article{IM2_1992_39_3_a3,
     author = {N. G. Kruzhilin},
     title = {Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in $\mathbf C^2$},
     journal = {Izvestiya. Mathematics },
     pages = {1151--1187},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a3/}
}
TY  - JOUR
AU  - N. G. Kruzhilin
TI  - Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in $\mathbf C^2$
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1151
EP  - 1187
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a3/
LA  - en
ID  - IM2_1992_39_3_a3
ER  - 
%0 Journal Article
%A N. G. Kruzhilin
%T Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in $\mathbf C^2$
%J Izvestiya. Mathematics 
%D 1992
%P 1151-1187
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a3/
%G en
%F IM2_1992_39_3_a3
N. G. Kruzhilin. Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in $\mathbf C^2$. Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1151-1187. http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a3/

[1] Bishop E., “Differentiahle manifolds in complex Euclidean space”, Duke Math. J., 32:1 (1965), 1–22 | DOI | MR

[2] Webster S., “The Euler and Pontrjagin numbers of an $n$-manifold in $\mathbf C^n$”, Comm. Mat. Helv., 60:2 (1985), 193–216 | DOI | MR | Zbl

[3] Bedford E., Gaveau B., “Envelopes of golomorphy of certain 2-spheres in $\mathbf C^2$”, Amer. J. of Math., 105:4 (1983), 975–1009 | DOI | MR | Zbl

[4] Bedford E., “Levi flat hypersurfaces in $\mathbf C^2$ with prescribed boundary: stability”, Ann. Sc. Super. Math. Pisa, 9:4 (1982), 529–570 | MR | Zbl

[5] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent Math., 1985, no. 2, 307–347 | DOI | MR | Zbl

[6] Bedford E., Klingenberg W., On the envelope of holomorphy of a 2-sphere in $\mathbf C^2$, Preprint | MR | Zbl

[7] Kenig C, Webster S., “The local hull of holomorphy of a surface in the space of two complex variables”, Invent. Math., 67:1 (1982), 1–21 | DOI | MR | Zbl

[8] Eliashberg Ya., Filling with holomorphic discs and its applications, Preprint

[9] Forstneric F., Stout E. L., A new class of polynomially convex sets, Preprint | MR

[10] Scherbina N. V., “O polinomialnoi obolochke vlozhennoi v $\mathbf C^2$ sfery”, Matem. zametki, 49:1 (1991), 127–134 | MR

[11] Eroshkin O. G., “Ob odnom topologicheskom svoistve kraya analiticheskogo podmnozhestva strogo psevdovypukloi oblasti v $\mathbf C^2$”, Matem. zametki, 49:5 (1991), 149–151 | MR | Zbl

[12] Forstneric F., “Stability of analytic discs with boundaries in totally real submanifold of $\mathbb C^2$”, Ann. Inst. Fourier, 37:1 (1987), 1–44 | MR | Zbl

[13] Chirka E. M., “Regulyarnost granits analiticheskikh mnozhestv”, Matem. sb., 117:3 (1982), 291–336 | MR | Zbl

[14] Nienhuis A., Wolf W. B., “Some integration problems in almost complex and complex manifolds”, Ann. Math., 77:3 (1963), 424–489 | DOI | MR

[15] Burde G., Zieshang H., Knots, Berlin, New York, 1985

[16] McDuff D., The local behaviour of holomorphic curves in almost complex 4-manifolds, Preprint

[17] Alinhac S., Baouendi M. S., Rothshild L. P., “Unique continuation and regularity at the boundary for holomorphic functions”, Duke Math. J., 61:2 (1990), 635–677 | DOI | MR