A function theory method in boundary value problems in the plane. I.~The~smooth case
Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 1033-1061.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general (not necessarily local) boundary value problem is considered for an elliptic $(l\times l)$ system on the plane of $n$th order containing only leading terms with constant coefficients. By a method of function theory developed for elliptic $(s\times s)$ systems of first order $$ \frac{\partial\Phi}{\partial y}-J\frac{\partial\Phi}{\partial x}=0 $$ with a constant triangular matrix $J=(J_{ij})_1^s$, $\operatorname{Im}J_{ij}>0$; this problem is reduced to an equivalent system of integrofunctional equations on the boundary. In particular, a criterion that the problem be Noetherian and a formula for its index are obtained in this way. All considerations are carried out in the smooth case when the boundary of the domain has no corner points, while the boundary operators act in spaces of continuous functions.
@article{IM2_1992_39_2_a4,
     author = {A. P. Soldatov},
     title = {A function theory method in boundary value problems in the plane. {I.~The~smooth} case},
     journal = {Izvestiya. Mathematics },
     pages = {1033--1061},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a4/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - A function theory method in boundary value problems in the plane. I.~The~smooth case
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1033
EP  - 1061
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a4/
LA  - en
ID  - IM2_1992_39_2_a4
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T A function theory method in boundary value problems in the plane. I.~The~smooth case
%J Izvestiya. Mathematics 
%D 1992
%P 1033-1061
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a4/
%G en
%F IM2_1992_39_2_a4
A. P. Soldatov. A function theory method in boundary value problems in the plane. I.~The~smooth case. Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 1033-1061. http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a4/

[1] Mazya V. G., “Granichnye integralnye uravneniya”, Itogi nauki i tekhniki. Sovr. problemy matem., 27, VINITI, M., 1987, 131–228

[2] Giraud G., “Nouvelles méthode pour traiter certaines problèmes relatifs aux équations du type elliptique”, J. de Math., 18 (1939), 111–143 | MR | Zbl

[3] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957

[4] Lopatinskii Ya. V., Teorii obschikh granichnykh zadach, Nauk. dumka, Kiev, 1989

[5] Agmon S., “Multiple layer potentials and the Dirichlet problem for higher order elliptic equation in the plane. I”, Comm. Pure and Appl. Math., 10:2 (1957), 179–239 | DOI | MR | Zbl

[6] Fichera G., “Linear elliptic equations of higher order in two independent variables and singular integral equations, with applications to anisotropic inhomogeneous elasticity”, Partical differential equations and continuum mechanics (Madison, Wise, 1960), Univ. of Wisconsin Press, 1961, 55–80 | MR

[7] Fichera G., Ricci P. E., “The single layer potential approach in the theory of boundary value problems for elliptic equations”, Lecture Notes in Math, 561, Springer, Berlin, N. Y., 1976, 39–50 | MR

[8] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, Gostekhizdat, M.,L., 1948 | MR

[9] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966

[10] Tovmasyan N. E., “Obschaya kraevaya zadacha dlya ellipticheskikh sistem vtorogo poryadka s postoyannymi koeffitsientami”, Diff. uravn., 1 (1966), 3–23 ; 2, 163–171 | Zbl | Zbl

[11] Saks R. S., Kraevye zadachi dlya ellipticheskikh sistem differentsialnykh uravnenii, Izd-vo NGU, Novosibirsk, 1975

[12] Soldatov A. P., “Ellipticheskie sistemy vysokogo poryadka”, Diff. uravn., 25:1 (1989), 136–144 | MR | Zbl

[13] Douglis A., “A function-theoretic approach to elliptic systems of equations in two variables”, Comm. Pure Appl. Math., 1 (1953), 259–289 | DOI | MR

[14] Hile G. N., “Elliptic systems in the plane with order terms and coustant coefficients”, Comm. in Part. Diff. Equat., 3(10) (1978), 949–977 | DOI | MR | Zbl

[15] Vekua I. H., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR

[16] Bers L., “Theory of pseudo-analytic functions”, Lecture Notes. N. Y., 1953 | MR

[17] Boyarskii B. V., “Teoriya obobschennogo analiticheskogo vektora”, Annales Polon. Math., 17:3 (1966), 281–320

[18] Gilbert R. P., “Constructive methods for elliptic equations”, Springer Lecture Notes, 365 (1974) | MR | Zbl

[19] Gilbert R. P., Hile G. N., “Generalized hypercomplex function theory”, Trans. Amer. Math. Soc., 195 (1974), 1–29 | DOI | MR | Zbl

[20] Volpert A. I., “Ob indekse i normalnoi razreshimosti dlya ellipticheskikh sistem differentsialnykh uravnenii na ploskosti”, Tr. Mosk. matem. ob-va, 10 (1961), 41–87 | MR

[21] Soldatov A. P., “Granichnye svoistva integralov tipa Koshi”, Diff. uravn., 26:1 (1990), 131–136 | MR | Zbl

[22] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[23] Bitsadze A. V., “O edinstvennosti resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii s chastnymi proizvodnymi”, UMN, III:6 (1948), 211–212

[24] Soldatov A. P., “Obobschennaya zadacha Dirikhle–Neimana”, Lineinye operatory v funktsionalnykh prostranstvakh, Groznyi, 1989, 153–154

[25] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[26] Bitsadze A. V., “O nekotorykh svoistvakh poligarmonicheskikh funktsii”, Diff. uravn., 24:5 (1988), 825–837 | MR

[27] Riman B., Sochineniya, Gostekhizdat, M., 1948

[28] Wendland W. L., Elliptic systems in the plane, Pitman, 1974 | Zbl

[29] Gilbert R. P., Buchanan J. L., First order elliptic systems, Acad. Pr., N. Y., 1983 | MR

[30] Vinogradov B. C., “Ob odnoi zadache dlya lineinykh ellipticheskikh sistem differentsialnykh uravnenii na ploskosti”, DAN SSSR, 118:6 (1958), 1059–1062 | Zbl

[31] Soldatov A. P., “Uslovie normalnosti dlya obschikh nelokalnykh zadach”, Sovr. problemy matem. fiziki: Tr. Vses. simpoziuma v Tbilisi 22–25 apr. 1987 g., 1, Tbilisi, 1987, 365–366 | MR

[32] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[33] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977 | MR | Zbl

[34] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970 | MR | Zbl

[35] Tsoi Sun Bon, “Zadacha Neimana dlya bigarmonicheskogo uravneniya”, Diff. uravn., 27:1 (1991), 169–172 | MR