A function theory method in boundary value problems in the plane. I.~The~smooth case
Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 1033-1061

Voir la notice de l'article provenant de la source Math-Net.Ru

A general (not necessarily local) boundary value problem is considered for an elliptic $(l\times l)$ system on the plane of $n$th order containing only leading terms with constant coefficients. By a method of function theory developed for elliptic $(s\times s)$ systems of first order $$ \frac{\partial\Phi}{\partial y}-J\frac{\partial\Phi}{\partial x}=0 $$ with a constant triangular matrix $J=(J_{ij})_1^s$, $\operatorname{Im}J_{ij}>0$; this problem is reduced to an equivalent system of integrofunctional equations on the boundary. In particular, a criterion that the problem be Noetherian and a formula for its index are obtained in this way. All considerations are carried out in the smooth case when the boundary of the domain has no corner points, while the boundary operators act in spaces of continuous functions.
@article{IM2_1992_39_2_a4,
     author = {A. P. Soldatov},
     title = {A function theory method in boundary value problems in the plane. {I.~The~smooth} case},
     journal = {Izvestiya. Mathematics },
     pages = {1033--1061},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a4/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - A function theory method in boundary value problems in the plane. I.~The~smooth case
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1033
EP  - 1061
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a4/
LA  - en
ID  - IM2_1992_39_2_a4
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T A function theory method in boundary value problems in the plane. I.~The~smooth case
%J Izvestiya. Mathematics 
%D 1992
%P 1033-1061
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a4/
%G en
%F IM2_1992_39_2_a4
A. P. Soldatov. A function theory method in boundary value problems in the plane. I.~The~smooth case. Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 1033-1061. http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a4/