Kuga--Satake abelian varieties and $l$-adic representations
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 855-867

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $J$ be a Kuga–Satake abelian variety defined over a number field $k\hookrightarrow\mathbf C$. Assuming a certain arithmetic condition on the canonical field $K$ associated to $J\otimes_k\mathbf C$, we prove the Mumford–Tate conjecture concerning the Lie algebra of the image of the $l$-adic representation in the one-dimensional cohomology of $J$.
@article{IM2_1992_39_1_a7,
     author = {S. G. Tankeev},
     title = {Kuga--Satake abelian varieties and $l$-adic representations},
     journal = {Izvestiya. Mathematics },
     pages = {855--867},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Kuga--Satake abelian varieties and $l$-adic representations
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 855
EP  - 867
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a7/
LA  - en
ID  - IM2_1992_39_1_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Kuga--Satake abelian varieties and $l$-adic representations
%J Izvestiya. Mathematics 
%D 1992
%P 855-867
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a7/
%G en
%F IM2_1992_39_1_a7
S. G. Tankeev. Kuga--Satake abelian varieties and $l$-adic representations. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 855-867. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a7/