Kuga--Satake abelian varieties and $l$-adic representations
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 855-867.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $J$ be a Kuga–Satake abelian variety defined over a number field $k\hookrightarrow\mathbf C$. Assuming a certain arithmetic condition on the canonical field $K$ associated to $J\otimes_k\mathbf C$, we prove the Mumford–Tate conjecture concerning the Lie algebra of the image of the $l$-adic representation in the one-dimensional cohomology of $J$.
@article{IM2_1992_39_1_a7,
     author = {S. G. Tankeev},
     title = {Kuga--Satake abelian varieties and $l$-adic representations},
     journal = {Izvestiya. Mathematics },
     pages = {855--867},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Kuga--Satake abelian varieties and $l$-adic representations
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 855
EP  - 867
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a7/
LA  - en
ID  - IM2_1992_39_1_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Kuga--Satake abelian varieties and $l$-adic representations
%J Izvestiya. Mathematics 
%D 1992
%P 855-867
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a7/
%G en
%F IM2_1992_39_1_a7
S. G. Tankeev. Kuga--Satake abelian varieties and $l$-adic representations. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 855-867. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a7/

[1] Dzh. Kassels, A. Frëlikh (eds.), Algebraicheskaya teoriya chisel, Mir, M., 1969

[2] Burbaki N., Gruppy i algebry Li, gl. 1–3, Mir, M., 1976 ; гл. 4–6, 1972 ; гл. 7–8, 1978 | MR | Zbl

[3] Chi W., $l$-adic and $\lambda$-adic representations attached to Abelian varieties defined over number fields, Preprint, 1989

[4] Deligne P., “La conjecture de Weil pour les surfaces K3”, Invent. math., 15 (1972), 206–226 | DOI | MR | Zbl

[5] Faltings G., “Endlichkeitssatze für abelsche Varietaten über Zahlkorpern”, Invent. math., 73 (1983), 349–366 | DOI | MR | Zbl

[6] Zarhin Yu. G., “Hodge groups of $K3$ surfaces”, J. für die reine und angew. Math., 341 (1983), 193–220 | MR

[7] Zarhin Yu. G., “Abelian varieties, $l$-adic representations and Lie algebras. Rank independence on $l$”, Invent. math., 55 (1979), 165–176 | DOI | MR

[8] Kostant B., “A characterization of the classical groups”, Duke Math. J., 25 (1958), 107–123 | DOI | MR | Zbl

[9] Mumford D., “Families of abelian varieties. Algebraic groups and discontinuous subgroups”, Proc. Symp. in Pure Math., 9 (1966), 347–352 | MR

[10] Pyatetskii-Shapiro I. I., “Vzaimootnosheniya mezhdu gipotezami Teita i Khodzha dlya abelevykh mnogoobrazii”, Matem. sb., 85 (127):4 (8) (1971), 610–620

[11] Satake I. Clifford algebras and families of abelian varieties, Nagoya J. Math., 27:2 (1966), 435–446 | MR

[12] Serre J.-P., “Groups algébriques associés aux modules de Hodge–Tate”, Astérisque, 65 (1979), 155–188 | MR

[13] Serre J.-P., “Résumè des cours de 1984-85”, Annuaire du Collège de France, 1985, 1–8 | MR

[14] Tankeev S. G., “Tsikly na prostykh abelevykh mnogoobraziyakh prostoi razmernosti nad chislovymi polyami”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1214–1227 | MR

[15] Tankeev S. G., “Poverkhnosti tipa $K3$ nad chislovymi polyami i $l$-adicheskie predstavleniya”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1252–1271

[16] Tankeev S. G., “Poverkhnosti tipa $K3$ nad chislovymi polyami i gipoteza Mamforda–Teita”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 846–861