Finiteness of {\it Ш\/} over totally real fields
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 829-853

Voir la notice de l'article provenant de la source Math-Net.Ru

Kolyvagin's method for the proof of the finiteness of Ш is extended to abelian varieties with real multiplication, of $L$-rank 0, defined over totally real fields, if they are factors of the Jacobians of Shimura curves. The finiteness of Ш for such a variety is proved, starting from the conditions that a Heegner point on it is not a torsion point.
@article{IM2_1992_39_1_a6,
     author = {V. A. Kolyvagin and D. Yu. Logachev},
     title = {Finiteness of {\it {{\CYRSH}\/}} over totally real fields},
     journal = {Izvestiya. Mathematics },
     pages = {829--853},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a6/}
}
TY  - JOUR
AU  - V. A. Kolyvagin
AU  - D. Yu. Logachev
TI  - Finiteness of {\it Ш\/} over totally real fields
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 829
EP  - 853
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a6/
LA  - en
ID  - IM2_1992_39_1_a6
ER  - 
%0 Journal Article
%A V. A. Kolyvagin
%A D. Yu. Logachev
%T Finiteness of {\it Ш\/} over totally real fields
%J Izvestiya. Mathematics 
%D 1992
%P 829-853
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a6/
%G en
%F IM2_1992_39_1_a6
V. A. Kolyvagin; D. Yu. Logachev. Finiteness of {\it Ш\/} over totally real fields. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 829-853. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a6/