Finiteness of {\it Ш\/} over totally real fields
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 829-853.

Voir la notice de l'article provenant de la source Math-Net.Ru

Kolyvagin's method for the proof of the finiteness of Ш is extended to abelian varieties with real multiplication, of $L$-rank 0, defined over totally real fields, if they are factors of the Jacobians of Shimura curves. The finiteness of Ш for such a variety is proved, starting from the conditions that a Heegner point on it is not a torsion point.
@article{IM2_1992_39_1_a6,
     author = {V. A. Kolyvagin and D. Yu. Logachev},
     title = {Finiteness of {\it {{\CYRSH}\/}} over totally real fields},
     journal = {Izvestiya. Mathematics },
     pages = {829--853},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a6/}
}
TY  - JOUR
AU  - V. A. Kolyvagin
AU  - D. Yu. Logachev
TI  - Finiteness of {\it Ш\/} over totally real fields
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 829
EP  - 853
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a6/
LA  - en
ID  - IM2_1992_39_1_a6
ER  - 
%0 Journal Article
%A V. A. Kolyvagin
%A D. Yu. Logachev
%T Finiteness of {\it Ш\/} over totally real fields
%J Izvestiya. Mathematics 
%D 1992
%P 829-853
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a6/
%G en
%F IM2_1992_39_1_a6
V. A. Kolyvagin; D. Yu. Logachev. Finiteness of {\it Ш\/} over totally real fields. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 829-853. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a6/

[1] Kolyvagin V. A., “Konechnost $E(Q)$ i $\text{Sh}(E,Q)$ dlya podklassa krivykh Veilya”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 522–540 | MR

[2] Kolyvagin V. A., “O gruppakh Mordella–Veilya i Shafarevicha–Teita dlya ellipticheskikh krivykh Veilya”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1154–1180 | MR | Zbl

[3] Kolyvagin V. A., “Euler systems”, The Grothendieck Festschrift, Progr. Math., 87, Birkhäuser Boston, Boston, 1990, 435–483 | MR | Zbl

[4] Kolyvagin V. A., Logachev D. Yu., “Konechnost gruppy Shafarevicha–Teita i gruppy ratsionalnykh tochek dlya nekotorykh modulyarnykh abelevykh mnogoobrazii”, Algebra i analiz, 1:5 (1989), 171–196 | MR

[5] Nekovár J., Kolyvagin's method for Chow groups of Kuga–Sato varieties, Preprint Max-Planck-Institut für Mathematik, No 78, 1990

[6] Shimura G., Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, Mir, M., 1973 | MR | Zbl

[7] Shimura G., “Construction of class fields and zeta-functions of algebraic curves”, Ann. of Math., 85:1 (1967), 58–159 | DOI | MR | Zbl

[8] Bump D., Friedberg S., Hoffstein J., “A nonvanishing theorem for derivatives of automorphic $L$-functions with applications to elliptic curves”, Bull. Amer. Math. Soc., 21:1 (1989), 89–93 | DOI | MR | Zbl

[9] Gross B. H., Zagier D. B., “Heegner points and derivatives of $L$-series”, Invent. Math., 84:2 (1986), 225–320 | DOI | MR | Zbl

[10] Vigneras M.-F., “Arithmétique des algèbres de quaternions”, Lect. Notes in Math., 1980, no. 800, 168 | MR

[11] Shimura G., “On Dirichlet series and abelian varieties attached to automorphic forms”, Ann. of Math., 72:2 (1962), 237–294 | DOI | MR

[12] Shimura G., Taniyama Y., “Complex multiplication of abelian varieties and its applications to number theory”, Publ. Math. Soc. Japan, 1961, no. 6 | MR

[13] Serre J.-P., “Resumé des cours de 1984-1985”, Annuaire du Collége de France, Paris, 1985

[14] Serre J.-P., “Resumé des cours de 1985-1986”, Annuaire du College de France, Paris, 1986