Criteria for holomorphic completeness
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 817-827.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a complex space which is countable at infinity is holomorphically complete if and only if the homology groups with compact supports for coherent analytic sheaves are trivial in the nonzero dimensions and the topological vector space of zero-dimensional homology with compact support of the structure sheaf is separated (Hausdorff). This result is then applied to complex spaces which can be represented as a union of an increasing sequence of holomorphically complete open sets and to complex spaces which locally admit holomorphically complete mappings into holomorphically complete spaces.
@article{IM2_1992_39_1_a5,
     author = {V. D. Golovin},
     title = {Criteria for holomorphic completeness},
     journal = {Izvestiya. Mathematics },
     pages = {817--827},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a5/}
}
TY  - JOUR
AU  - V. D. Golovin
TI  - Criteria for holomorphic completeness
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 817
EP  - 827
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a5/
LA  - en
ID  - IM2_1992_39_1_a5
ER  - 
%0 Journal Article
%A V. D. Golovin
%T Criteria for holomorphic completeness
%J Izvestiya. Mathematics 
%D 1992
%P 817-827
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a5/
%G en
%F IM2_1992_39_1_a5
V. D. Golovin. Criteria for holomorphic completeness. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 817-827. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a5/

[1] Golovin V. D., Gomologii analiticheskikh puchkov i teoremy dvoistvennosti, Nauka, M., 1986 | MR

[2] Ramis J.-P., Ruget G., Verdier J.-L., “Dualité relative en géométrie analytique complexe”, Invent. math., 13:4 (1971), 261–283 | DOI | MR | Zbl

[3] Fornaess J. E., “An increasing sequence of Stein manifolds whose limit is not Stein”, Math. Ann., 223:3 (1976), 275–277 | DOI | MR | Zbl

[4] Stein K., “Oberlagerungen holomorph-voll-ständiger komplexer Räume”, Arch. Math., 7:5 (1956), 354–361 | DOI | MR | Zbl

[5] Markoe A., “Runge families and inductive limits of Stein spaces”, Ann. Inst. Fourier, 27:3 (1977), 117–127 | MR | Zbl

[6] Andreotti A., Grauert H., “Théorèmes de finitude pour la cohomologie des espaces complexes”, Bull. Soc. math. Franco, 90:2 (1962), 193–259 | MR

[7] Fornaess J. E., Narasimhan R., “The Levi problem on complex spaces with singularities”, Math. Ann., 248:1 (1980), 47–72 | DOI | MR | Zbl

[8] Jennane B., “Groupes de cohomologie d'un fibré holomorphe à base et à fibre de Stein”, Invent. math., 54:1 (1979), 75–79 | DOI | MR | Zbl

[9] Jennane B., “Problème de Levi et morphisme localement de Stein”, Math. Ann., 256:1 (1981), 37–42 | DOI | MR | Zbl

[10] Jennane B., “Remarqises sur les ouverts localements de Stein”, Math. Ann., 263:3 (1983), 371–375 | DOI | MR | Zbl