Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1992_39_1_a2, author = {A. T. Fomenko}, title = {A~bordism theory for integrable nondegenerate {Hamiltonian} systems with two degrees of freedom. {A~new} topological invariant of higher-dimensional integrable systems}, journal = {Izvestiya. Mathematics }, pages = {731--759}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {1992}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a2/} }
TY - JOUR AU - A. T. Fomenko TI - A~bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A~new topological invariant of higher-dimensional integrable systems JO - Izvestiya. Mathematics PY - 1992 SP - 731 EP - 759 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a2/ LA - en ID - IM2_1992_39_1_a2 ER -
%0 Journal Article %A A. T. Fomenko %T A~bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A~new topological invariant of higher-dimensional integrable systems %J Izvestiya. Mathematics %D 1992 %P 731-759 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a2/ %G en %F IM2_1992_39_1_a2
A. T. Fomenko. A~bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A~new topological invariant of higher-dimensional integrable systems. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 731-759. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a2/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[2] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl
[3] Bogoyavlenskii O. I., “Novye algebraicheskie konstruktsii uravnenii Eilera”, DAN SSSR, 268:2 (1983), 277–280 | MR | Zbl
[4] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl
[5] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl
[6] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1 (1989), 145–173 | MR
[7] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR
[8] Fomenko A. T., Tsishang X., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Sep. matem., 52:2 (1988), 378–407 | Zbl
[9] Fomenko A. T., Tsishang X., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl
[10] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funktsion. analiz i ego prilozh., 22:4 (1988), 38–51 | MR | Zbl
[11] Nguen Ten Zung, “O svoistve obschego polozheniya prostykh bottovskikh integralov”, UMN, 45:4 (1990), 161–162 | MR
[12] Kronrod A. S., “O funktsiyakh dvukh peremennykh”, UMN, 5:1 (1950), 24–134 | MR | Zbl
[13] Polyakova L. S., “Invarianty integriruemykh sluchaev Eilera i Lagranzha”, UMN, 44:3 (1989), 171–172 | MR | Zbl
[14] Lerman L. M., Umanskii Ya. L., “Integriruemye gamiltonovy sistemy i puassonovskie deistviya”, Metody kachestvennoi teorii differentsialnykh uravnenii, Izd-vo Gorkovskogo un-ta, Gorkii, 1984, 140–147 | MR
[15] Oshemkov A. A., “Topologiya izoenergeticheskikh poverkhnostei i bifurkatsionnye diagrammy integriruemykh sluchaev dinamiki tverdogo tela na $so(4)$”, UMN, 42:6 (1987), 199–200 | MR
[16] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR