A~bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A~new topological invariant of higher-dimensional integrable systems
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 731-759.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new objects, bordisms of integrable systems, are found and studied. The classes of rigidly bordant systems form a nontrivial abelian group, which makes it possible to construct new integrable systems on the basis of previously known ones. Among the generators of this bordism group are known physical integrable systems, as, for example, the Lagrange system (from the dynamics of a heavy rigid body) and others. Moreover, a new topological invariant of systems with many degrees of freedom is also constructed. It turns out that two integrable systems are topologically equivalent if and only if their invariants coincide. In particular, it follows from this that the set of topological classes of integrable systems is discrete. The invariant can be effectively calculated for concrete integrable systems arising in physics and mechanics.
@article{IM2_1992_39_1_a2,
     author = {A. T. Fomenko},
     title = {A~bordism theory for integrable nondegenerate {Hamiltonian} systems with two degrees of freedom. {A~new} topological invariant of higher-dimensional integrable systems},
     journal = {Izvestiya. Mathematics },
     pages = {731--759},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a2/}
}
TY  - JOUR
AU  - A. T. Fomenko
TI  - A~bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A~new topological invariant of higher-dimensional integrable systems
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 731
EP  - 759
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a2/
LA  - en
ID  - IM2_1992_39_1_a2
ER  - 
%0 Journal Article
%A A. T. Fomenko
%T A~bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A~new topological invariant of higher-dimensional integrable systems
%J Izvestiya. Mathematics 
%D 1992
%P 731-759
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a2/
%G en
%F IM2_1992_39_1_a2
A. T. Fomenko. A~bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A~new topological invariant of higher-dimensional integrable systems. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 731-759. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a2/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[2] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[3] Bogoyavlenskii O. I., “Novye algebraicheskie konstruktsii uravnenii Eilera”, DAN SSSR, 268:2 (1983), 277–280 | MR | Zbl

[4] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl

[5] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl

[6] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1 (1989), 145–173 | MR

[7] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[8] Fomenko A. T., Tsishang X., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Sep. matem., 52:2 (1988), 378–407 | Zbl

[9] Fomenko A. T., Tsishang X., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[10] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funktsion. analiz i ego prilozh., 22:4 (1988), 38–51 | MR | Zbl

[11] Nguen Ten Zung, “O svoistve obschego polozheniya prostykh bottovskikh integralov”, UMN, 45:4 (1990), 161–162 | MR

[12] Kronrod A. S., “O funktsiyakh dvukh peremennykh”, UMN, 5:1 (1950), 24–134 | MR | Zbl

[13] Polyakova L. S., “Invarianty integriruemykh sluchaev Eilera i Lagranzha”, UMN, 44:3 (1989), 171–172 | MR | Zbl

[14] Lerman L. M., Umanskii Ya. L., “Integriruemye gamiltonovy sistemy i puassonovskie deistviya”, Metody kachestvennoi teorii differentsialnykh uravnenii, Izd-vo Gorkovskogo un-ta, Gorkii, 1984, 140–147 | MR

[15] Oshemkov A. A., “Topologiya izoenergeticheskikh poverkhnostei i bifurkatsionnye diagrammy integriruemykh sluchaev dinamiki tverdogo tela na $so(4)$”, UMN, 42:6 (1987), 199–200 | MR

[16] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR