The extended matrix disk is a domain of holomorphy
Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 637-645.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the extended matrix disk is a domain of holomorphy. This gives a positive answer to a conjecture that is a “compact” analogue of the conjecture on the extended future tube.
@article{IM2_1992_38_3_a9,
     author = {A. G. Sergeev and P. Heinzner},
     title = {The extended matrix disk is a domain of holomorphy},
     journal = {Izvestiya. Mathematics },
     pages = {637--645},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a9/}
}
TY  - JOUR
AU  - A. G. Sergeev
AU  - P. Heinzner
TI  - The extended matrix disk is a domain of holomorphy
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 637
EP  - 645
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a9/
LA  - en
ID  - IM2_1992_38_3_a9
ER  - 
%0 Journal Article
%A A. G. Sergeev
%A P. Heinzner
%T The extended matrix disk is a domain of holomorphy
%J Izvestiya. Mathematics 
%D 1992
%P 637-645
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a9/
%G en
%F IM2_1992_38_3_a9
A. G. Sergeev; P. Heinzner. The extended matrix disk is a domain of holomorphy. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 637-645. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a9/

[1] Heinzner P., Invariantentheorie in der komplexen Analysis, Preprint, Ruhr Univ., Bochuin, 1990

[2] Zhou Xiangyu, A note on the extended matrix disc conjecture, Preprint, Inst. of Math., Beijing, 1990 | Zbl

[3] Sergeev A. G., On matrix Reinhardt domains, Preprint, Mittag-Leffler Inst., Stockholm, 1989

[4] Bogolyubov N. N., Logunov A. A., Godorov I. G., Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, Nauka, M., 1969 | MR

[5] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[6] Iost R., Obschaya teoriya kvantovannykh polei, Mir, M., 1967 | MR

[7] Striter R., Vaitman A., RST, spin i statistika i vsë takoe, Nauka, M., 1966

[8] Vladimirov V. S., “Analytic functions of several complex variables and axiomatic quantum field theory”, Actes Congres int. math. Nice, 3, Gauthier-Villars, Paris, 1971, 21–26 | MR

[9] Vladimirov V. S, Zharinov V. V., “Analiticheskie metody v matematicheskoi fizike”, Tr. MIAN SSSR, 175, 1986, 113–133 | MR | Zbl

[10] Wightman A. S., “Quantum field theory and analytic functions of several complex variables”, J. Indian Math. Soc., 24 (1961), 625–677 | MR | Zbl

[11] Bogolyubov H. H., Vladimirov V. S., “Odna teorema ob analiticheskom prodolzhenii obobschennykh funktsii”, Nauch. doklady vysshei shkoly, fiz.-mat. nauki, no. 3, 1958, 26–35

[12] Bogolyubov N. N., Vladimirov V. S., “Predstavlenie $n$-tochechnykh funktsii”, Tr. MIAN SSSR, 112, 1971, 5–21 | Zbl

[13] Bros J., Epstein H., Glaser V., “On the connection between analyticity and Lorentz covariance of Wightman functions”, Comm. Math. Phys., 6:1 (1967), 77–100 | DOI | MR | Zbl

[14] Zavyalov B. I., Trushin V. B., “O rasshirennoi $n$-tochechnoi trube”, Teor. matem. fizika, 27:1 (1976), 3–15 | MR

[15] Vladimirov V. S, Sergeev A. G., “Kompleksnyi analiz v trube buduschego”, Itogi nauki i tekhniki. Sovr. problemy matem. Fund. naprav., 8, VINITI, M., 1985, 191–266 | MR

[16] Vladimirov V. S., “Complex variables in mathematical phisics”, Lect. Not. Math., 919 (1981), 358–386 | DOI