Breaking solitons. V.~Systems of hydrodynamic type
Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 439-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing the systems of hydrodynamic type having a number of Riemann invariants is indicated. The method is based on a new differential equation in a space of linear operators. The systems of hydrodynamic type naturally connected with the Volterra model and the Toda lattice are constructed. Their continuous limits are found, the equation (see [1] and [2]) of interaction between Riemann breaking waves and transversal long waves is among them. The equations for self-similar solutions of homogeneous systems of hydrodynamic type are derived.
@article{IM2_1992_38_3_a0,
     author = {O. I. Bogoyavlenskii},
     title = {Breaking solitons. {V.~Systems} of hydrodynamic type},
     journal = {Izvestiya. Mathematics },
     pages = {439--454},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a0/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Breaking solitons. V.~Systems of hydrodynamic type
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 439
EP  - 454
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a0/
LA  - en
ID  - IM2_1992_38_3_a0
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Breaking solitons. V.~Systems of hydrodynamic type
%J Izvestiya. Mathematics 
%D 1992
%P 439-454
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a0/
%G en
%F IM2_1992_38_3_a0
O. I. Bogoyavlenskii. Breaking solitons. V.~Systems of hydrodynamic type. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 439-454. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a0/

[1] Bogoyavlenskii O. I., “Oprokidyvayuschiesya solitony v novykh dvumernykh integriruemykh uravneniyakh”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 243–257 | MR

[2] Bogoyavlenskii O. I., “Oprokidyvayuschiesya solitony v dvumernykh integriruemykh uravneniyakh”, UMN, 45:4 (1990), 17–77 | MR | Zbl

[3] Whitham G. B., “Non-linear dispersive waves”, Proc. Roy. Soc. Ser. A, 139 (1965), 283–291 | MR

[4] Maslov V. P., “Perekhod pri $h\to 0$ uravneniya Geizenberga v uravnenie dinamiki odnoatomnogo idealnogo gaza i kvantovanie relyativistskoi gidrodinamiki”, Teor. i matem. fizika., 1:3 (1969), 378–383 | MR

[5] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[6] Bogoyavlenskii O. I., “Nekotorye konstruktsii integriruemykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 51:4 (1987), 737–766 | MR | Zbl

[7] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Advanc. in Math., 16:12 (1975), 197–220 | DOI | MR | Zbl

[8] Bogoyavlenskii O. I., “Predstavlenie Laksa so spektralnym parametrom dlya nekotorykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 243–266 | MR

[9] Gümral H., Nutku Y., Multi-Hamiltonian structure of equations of hydrodynamic type, Preprint / Bilkent University, 1990 | MR | Zbl