The fundamental group of the scomplement to a hypersurface in $\mathbf C^n$
Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 399-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a complex algebraic hypersurface in $\mathbf C^n$ not passing through the point $o\in\mathbf C^n$. The generators of the fundamental group $\pi_1(\mathbf C^n\setminus D,o)$ and the relations among them are described in terms of the real cone over $D$ with apex at $o$. This description is a generalization to the algebraic case of Wirtinger's corepresentation of the fundamental group of a knot in $\mathbf R^3$. A new proof of Zariski's conjecture about commutativity of the fundamental group $\pi_1(\mathbf P^2\setminus C)$ for a projective nodal curve $C$ is given in the second part of the paper based on the description of the generators and the relations in the group $\pi_1(\mathbf C^n\setminus D)$ obtained in the first part.
@article{IM2_1992_38_2_a8,
     author = {Vik. S. Kulikov},
     title = {The fundamental group of the scomplement to a hypersurface in $\mathbf C^n$},
     journal = {Izvestiya. Mathematics },
     pages = {399--418},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a8/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - The fundamental group of the scomplement to a hypersurface in $\mathbf C^n$
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 399
EP  - 418
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a8/
LA  - en
ID  - IM2_1992_38_2_a8
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T The fundamental group of the scomplement to a hypersurface in $\mathbf C^n$
%J Izvestiya. Mathematics 
%D 1992
%P 399-418
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a8/
%G en
%F IM2_1992_38_2_a8
Vik. S. Kulikov. The fundamental group of the scomplement to a hypersurface in $\mathbf C^n$. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 399-418. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a8/

[1] Delign P., “Le group fondamental du complement d'une courbe plane n'ayant que des points doubles ordinaires est abelien (d'apres W. Fulton)”, Seminair Bourbaki, V. 1979/80, Lect. Notes in Math., 842, 1981, 1–10 | MR | Zbl

[2] Fulton W., “On a fundamental group of the complement of a node curve”, Ann. Math. Ser. 2, 111:2 (1980), 407–409 | DOI | MR | Zbl

[3] Katz N., “Pinceaux de Lefschetz: theoreme de'existence”, SGA VII exp. XVII, Lect. Notes in Math., 340, 1970

[4] Nori M., “Zariski's conjecture and related problems”, Ann. Sci. Ec. Norm Sup. Ser. 4, 16 (1983), 305–344 | MR | Zbl

[5] Orevkov S. Yu., “Fundamentalnaya gruppa dopolneniya ploskoi algebraicheskoi krivoi”, Matem. sb., 137:2 (1988), 260–270 | MR