Deformations of instanton surfaces
Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 313-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution is given for the problem of determining smoothness invariants on an algebraic surface from a nonsmooth compact moduli space of instantons. For this a study is made of the deformation of the instanton surface. The results are used to distinguish smoothness on certain algebraic surfaces.
@article{IM2_1992_38_2_a4,
     author = {V. Ya. Pidstrigach},
     title = {Deformations of instanton surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {313--331},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a4/}
}
TY  - JOUR
AU  - V. Ya. Pidstrigach
TI  - Deformations of instanton surfaces
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 313
EP  - 331
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a4/
LA  - en
ID  - IM2_1992_38_2_a4
ER  - 
%0 Journal Article
%A V. Ya. Pidstrigach
%T Deformations of instanton surfaces
%J Izvestiya. Mathematics 
%D 1992
%P 313-331
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a4/
%G en
%F IM2_1992_38_2_a4
V. Ya. Pidstrigach. Deformations of instanton surfaces. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 313-331. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a4/

[1] Barlow R. N., “A simply connected surface of general type with $p_g=0$”, Invent. Math., 79 (1985), 293–301 | DOI | MR | Zbl

[2] Barth W., Peters C., Van de Ven A., Compact Complex Surfaces, Springer, Berlin, 1984 | MR | Zbl

[3] Friedman R., Morgan J. W., “Algebraic surfaces and 4-manifolds: Some conjectures and speculations”, Bull. Am. Math. Soc., 18:1 (1988), 1–19 | DOI | MR | Zbl

[4] Kotschick D., “On manifolds homeomorphic to $\mathbf C\mathbf P^2\#8\overline {\mathbf C\mathbf P^2}$”, Invent. Math., 95 (1989), 591–600 | DOI | MR | Zbl

[5] Okonek C., Van de Ven A., “$\Gamma$-type invariants associated to $PU(2)$-bundles and the differentiable structure of Barlow's surface”, Invent. Math., 95 (1989), 601–614 | DOI | MR | Zbl

[6] Donaldson S., “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles”, Proc. Lond. Math. Soc., 50:1 (1985), 1–26 | DOI | MR | Zbl

[7] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988 | MR

[8] Mukai S., “On the moduli space of bundles of $K3$-surfaces. I”, Vector Bundles on Algebraic Varietes (Bombay Colloquium, 1984), Tata Inst. Fund. Res., Bombay, 1987, 341–413 | MR | Zbl

[9] Kobayashi S., Differential geometry of holomorphic vector bundles. I, Publications of the Mathematical Society of Japan, 15, Shoten and Princeton University Press, 1987 | MR | Zbl

[10] Miyaoka Y., “Tricanonical maps of Numerical Godeaux surfaces”, Invent. Math., 34 (1976), 99–112 | DOI | MR

[11] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[12] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR