Deformations of instanton surfaces
Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 313-331

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution is given for the problem of determining smoothness invariants on an algebraic surface from a nonsmooth compact moduli space of instantons. For this a study is made of the deformation of the instanton surface. The results are used to distinguish smoothness on certain algebraic surfaces.
@article{IM2_1992_38_2_a4,
     author = {V. Ya. Pidstrigach},
     title = {Deformations of instanton surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {313--331},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a4/}
}
TY  - JOUR
AU  - V. Ya. Pidstrigach
TI  - Deformations of instanton surfaces
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 313
EP  - 331
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a4/
LA  - en
ID  - IM2_1992_38_2_a4
ER  - 
%0 Journal Article
%A V. Ya. Pidstrigach
%T Deformations of instanton surfaces
%J Izvestiya. Mathematics 
%D 1992
%P 313-331
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a4/
%G en
%F IM2_1992_38_2_a4
V. Ya. Pidstrigach. Deformations of instanton surfaces. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 313-331. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a4/