A~reduction theorem for TIsubgroups
Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 299-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following reduction theorem for TI-subgroups is obtained: if a 2-group $A$ is a TI-subgroup of a finite group, then either $A$ is an elementary or cyclic group, or the normal closure of $A$ is a well-known group.
@article{IM2_1992_38_2_a3,
     author = {A. A. Makhnev},
     title = {A~reduction theorem for {TIsubgroups}},
     journal = {Izvestiya. Mathematics },
     pages = {299--311},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a3/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - A~reduction theorem for TIsubgroups
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 299
EP  - 311
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a3/
LA  - en
ID  - IM2_1992_38_2_a3
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T A~reduction theorem for TIsubgroups
%J Izvestiya. Mathematics 
%D 1992
%P 299-311
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a3/
%G en
%F IM2_1992_38_2_a3
A. A. Makhnev. A~reduction theorem for TIsubgroups. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 299-311. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a3/

[1] Makhnev A. A., “O porozhdenii konechnykh grupp klassami involyutsii”, Matem. sb., 111:2 (1980), 266–278 | MR | Zbl

[2] Makhnev A. A., “O plotno vlozhennykh podgruppakh konechnykh grupp”, Matem. sb., 121:4 (1983), 523–532 | MR

[3] Makhnev A. A., “$TI$-podgruppy v gruppakh tipa kharakteristiki 2”, Matem. sb., 127:2 (1985), 239–244 | MR | Zbl

[4] Makhnev A. A., “O $TI$-podgruppakh konechnykh grupp”, Izv. AN SSSR. Ser. matem., 50:1 (1986), 22–36 | MR | Zbl

[5] Aschbacher M., “Finite groups generated by odd transpositions”, Math. Z., 127:1 (1972), 45–56 ; J. Algebra, 26:2 (1973), 451–491 | DOI | MR | Zbl | DOI | MR

[6] Aschbacher M., “Tightly embedded subgroups of finite groups”, J. Algebra, 42:1 (1976), 85–101 | DOI | MR | Zbl

[7] Aschbacher M., “A characterization of Chevalley groups over fields of odd order”, Ann. Math., 106:2–3 (1977), 353–468 | DOI | MR | Zbl

[8] Aschbacher M., “Weak closure in finite groups of even characteristic”, J. Algebra, 70:2 (1981), 561–627 | DOI | MR | Zbl

[9] Bender H., “Transitive Gruppen in denen jede Involution genau einen Punkt festläft”, J. Algebra, 17:3 (1971), 527–554 | DOI | MR | Zbl

[10] Suzuki M., “Finite groups of even order in which Sylow 2-groups are independent”, Ann. Math., 80 (1964), 58–77 | DOI | MR | Zbl

[11] Timmesfeld F., “A characterization of the Chevalley and Steinberg groups over $F_2$”, Geom. dedic., 1:3 (1973), 269–321 | DOI | MR | Zbl

[12] Timmesfeld F., “Groups generated by root-involutions”, J. Algebra, 33:1 (1975), 75–134 ; 35:1-3, 367–441 | DOI | MR | Zbl | DOI | Zbl

[13] Timmesfeld F., “On the structure of 2-local subgroups in finite groups”, Math. Z., 161:1 (1978), 119–136 | DOI | MR | Zbl

[14] Timmesfeld F., Solomon R., “A note on tightly embedded subgroups”, Arch. Math., 31:2 (1978), 217–223 | MR | Zbl

[15] Timmesfeld F., Hochheim Y., “A note on $TI$-subgroups”, Arch. Math., 51:1 (1988), 97–103 | MR | Zbl