Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1992_38_2_a0, author = {V. K. Bulitko}, title = {On ways of characterizing complete sets}, journal = {Izvestiya. Mathematics }, pages = {225--249}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {1992}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a0/} }
V. K. Bulitko. On ways of characterizing complete sets. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 225-249. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a0/
[1] Rodzhers X., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972, 624 pp. | MR
[2] Bulitko V. K., “Svodimost lineinymi po Zhegalkinu tablitsami”, Sib. matem. zhurn., 21:3 (1980), 23–31 | MR | Zbl
[3] Bulitko V. K., “Bulevy klassy tyuringovykh svedenii”, Izv. AN SSSR. Ser. matem., 49:1 (1985), 3–31 | MR
[4] Lachlan A. H., “Complete recursively enumerable sets”, Proc. Amer. Math. Soc., 19 (1966), 99–102 | DOI | MR
[5] Arslanov M. M., “O nekotorykh obobscheniyakh teoremy i nepodvizhnoi tochke”, Izv. vuzov. Matematika, 1981, no. 5, 9–16 | MR | Zbl
[6] Arslanov M. M., Lokalnaya teoriya stepenei nerazreshimosti i $\Delta^0_2$-mnozhestva, Izd-vo KGU, Kazan, 1987, 139 pp. | Zbl
[7] Shoenfield J. R., “Quasicreative sets”, Proc. Amer. Math. Soc., 8 (1957), 964–967 | DOI | MR | Zbl
[8] Eits K. E. M., “Tri teoremy o stepenyakh rekursivno perechislimykh mnozhestv”, Stepeni nerazreshimosti, Nauka, M., 1977, 97–108
[9] Gill J. T., Morris P. H., “On subcreative sets and $s$-reducibility”, J. of Symb. Logic., 39 (1974), 669–677 | DOI | MR
[10] Bulitko V. K., “O kriteriyakh polnoty dlya tyuringovykh svodimostei”, VII Vsesoyuznaya konf. po matem. logike: Tezisy dokladov, Novosibirsk, 1984, 24 pp.
[11] Bulitko V. K., “O nekotorykh formakh kriteriev polnoty mnozhestv”, VIII Vsesoyuznaya konf. po matem. logike: Tezisy dokladov, Moskva, 1986, 23 pp. | Zbl
[12] Jockusch S. G., Soare R. I., “$\Pi^0_1$-classes and degrees of theories”, Trans. of the Amer. Math. Soc., 173 (1972), 33–56 | DOI | MR | Zbl