Maximal tubular hypersurfaces in Minkowski space
Izvestiya. Mathematics, Tome 38 (1992) no. 1, pp. 203-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider $C^2$-solutions of the equations for maximal surfaces in Minkowski space $$ \sum_{i=1}^n \frac\partial{\partial x_i}\left(\frac{fx_i}{\sqrt{1-|\nabla f|^2}}\right)=0. $$ The hypersurface $t=f(x)$ is tubular if for every $\tau$ the level sets $E_\tau=\{x\colon f(x)=\tau\}$ are compact. The girth function of a tubular hypersurface is given by $\rho(\tau)=\max\limits_{x\in E_\tau}|x|$. In this paper it is shown that the girth function of a maximal tubular surface satisfies the differential inequality $\rho(t)\rho ''(t)\geqslant(n-1)(\rho^{'2}(t)-1)$. As a consequence of this assertion it is established that the union of the rays tangent to the hypersurface at an isolated singular point forms the light cone; a bound is obtained, in the neighborhood of an isolated singularity, to the spread of the maximal tube in the direction of the time axis in terms of its deviation from the light cone.
@article{IM2_1992_38_1_a9,
     author = {V. A. Klyachin and V. M. Miklyukov},
     title = {Maximal tubular hypersurfaces in {Minkowski} space},
     journal = {Izvestiya. Mathematics},
     pages = {203--213},
     year = {1992},
     volume = {38},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a9/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - V. M. Miklyukov
TI  - Maximal tubular hypersurfaces in Minkowski space
JO  - Izvestiya. Mathematics
PY  - 1992
SP  - 203
EP  - 213
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a9/
LA  - en
ID  - IM2_1992_38_1_a9
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A V. M. Miklyukov
%T Maximal tubular hypersurfaces in Minkowski space
%J Izvestiya. Mathematics
%D 1992
%P 203-213
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a9/
%G en
%F IM2_1992_38_1_a9
V. A. Klyachin; V. M. Miklyukov. Maximal tubular hypersurfaces in Minkowski space. Izvestiya. Mathematics, Tome 38 (1992) no. 1, pp. 203-213. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a9/

[1] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1985

[2] Nielsen B., “Minimal immersions, Einstein's equations and Mach's principle”, J. Geom. Phys., 4:1 (1987), 1–20 | DOI | MR | Zbl

[3] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[4] Vedenyapin A. D., Miklyukov V. M., “Vneshnie razmery trubchatykh minimalnykh giperpoverkhnostei”, Matem. sb., 131(173):2(10) (1986), 240–250 | MR | Zbl

[5] Ecker K., “Area maximiziung hypersurfaces in Minkowski space having an isolated singularity”, Manuscr. Math., 56:4 (1986), 375–397 | DOI | MR | Zbl