Balayage on a system of rays and entire functions of completely regular growth
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 179-197

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a technique for constructing functions that are subharmonic in the complex plane, agree with a given subharmonic function $u$ on a system $S$ of rays with vertex at the origin, and are harmonic outside $S$. For a wide class of systems $S$, this technique permits one to obtain criteria for the complete regularity of growth of entire functions $f$ on $S$ in terms of the balayage of the distribution of zeros of $f$.
@article{IM2_1992_38_1_a7,
     author = {B. N. Khabibullin},
     title = {Balayage on a system of rays and entire functions of completely regular growth},
     journal = {Izvestiya. Mathematics },
     pages = {179--197},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a7/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Balayage on a system of rays and entire functions of completely regular growth
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 179
EP  - 197
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a7/
LA  - en
ID  - IM2_1992_38_1_a7
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Balayage on a system of rays and entire functions of completely regular growth
%J Izvestiya. Mathematics 
%D 1992
%P 179-197
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a7/
%G en
%F IM2_1992_38_1_a7
B. N. Khabibullin. Balayage on a system of rays and entire functions of completely regular growth. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 179-197. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a7/