Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 107-129

Voir la notice de l'article provenant de la source Math-Net.Ru

Under suitable conditions countable solvability of the problem $-u_{tt}+\Delta u-g(u,r,t)=h(r,t)$ in $B_\pi$, $u(x,t)=u(x,t+T)$, $T>0$, $u(\partial B_\pi,t)=0$, where $B_\pi\subset\mathbf R^N$ is a ball of radius $\pi$, is proved.
@article{IM2_1992_38_1_a4,
     author = {I. A. Kuzin},
     title = {Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation},
     journal = {Izvestiya. Mathematics },
     pages = {107--129},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/}
}
TY  - JOUR
AU  - I. A. Kuzin
TI  - Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 107
EP  - 129
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/
LA  - en
ID  - IM2_1992_38_1_a4
ER  - 
%0 Journal Article
%A I. A. Kuzin
%T Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation
%J Izvestiya. Mathematics 
%D 1992
%P 107-129
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/
%G en
%F IM2_1992_38_1_a4
I. A. Kuzin. Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 107-129. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/