Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 107-129
Voir la notice de l'article provenant de la source Math-Net.Ru
Under suitable conditions countable solvability of the problem $-u_{tt}+\Delta u-g(u,r,t)=h(r,t)$ in $B_\pi$, $u(x,t)=u(x,t+T)$, $T>0$, $u(\partial B_\pi,t)=0$, where $B_\pi\subset\mathbf R^N$ is a ball of radius $\pi$, is proved.
@article{IM2_1992_38_1_a4,
author = {I. A. Kuzin},
title = {Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation},
journal = {Izvestiya. Mathematics },
pages = {107--129},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/}
}
TY - JOUR AU - I. A. Kuzin TI - Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation JO - Izvestiya. Mathematics PY - 1992 SP - 107 EP - 129 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/ LA - en ID - IM2_1992_38_1_a4 ER -
I. A. Kuzin. Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 107-129. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/