Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 107-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under suitable conditions countable solvability of the problem $-u_{tt}+\Delta u-g(u,r,t)=h(r,t)$ in $B_\pi$, $u(x,t)=u(x,t+T)$, $T>0$, $u(\partial B_\pi,t)=0$, where $B_\pi\subset\mathbf R^N$ is a ball of radius $\pi$, is proved.
@article{IM2_1992_38_1_a4,
     author = {I. A. Kuzin},
     title = {Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation},
     journal = {Izvestiya. Mathematics },
     pages = {107--129},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/}
}
TY  - JOUR
AU  - I. A. Kuzin
TI  - Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 107
EP  - 129
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/
LA  - en
ID  - IM2_1992_38_1_a4
ER  - 
%0 Journal Article
%A I. A. Kuzin
%T Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation
%J Izvestiya. Mathematics 
%D 1992
%P 107-129
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/
%G en
%F IM2_1992_38_1_a4
I. A. Kuzin. Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 107-129. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/

[1] Tanaka K., “Infinitely many periodic solutions for the equation: $u_{tt}-u_{xx}\pm |u|^{\rho-1}u=f(x,t)$. II”, Trans. Amer. Math. Soc., 307 (1988), 615–645 | DOI | MR | Zbl

[2] Plotnikov P. I., “Suschestvovanie schetnogo mnozhestva periodicheskikh reshenii zadachi o vynuzhdennykh kolebaniyakh dlya slabo nelineinogo volnovogo uravneniya”, Matem. sb., 136 (1988), 546–560 | MR

[3] Pokhozhaev S. I., “Ob odnom podkhode k nelineinym uravneniyam”, DAN SSSR, 247 (1979), 1327–1331 | MR | Zbl

[4] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956 | MR

[5] Rabinowitz P. H., “Multiple critical points of perturbed symmetric functionals”, Trans. Amer. Math. Soc., 272 (1982), 753–769 | DOI | MR | Zbl

[6] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[7] Gradshtein I. S, Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[8] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980 | MR

[9] Bahri A., Berestycki H., “A perturbation method in critical point theory and applications”, Trans. Amer. Math. Soc., 267 (1981), 1–32 | DOI | MR | Zbl

[10] Ambrosetti A., Rabinowitz P. H., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14 (1973), 349–381 | DOI | MR | Zbl