Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1992_38_1_a4, author = {I. A. Kuzin}, title = {Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation}, journal = {Izvestiya. Mathematics }, pages = {107--129}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {1992}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/} }
TY - JOUR AU - I. A. Kuzin TI - Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation JO - Izvestiya. Mathematics PY - 1992 SP - 107 EP - 129 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/ LA - en ID - IM2_1992_38_1_a4 ER -
I. A. Kuzin. Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 107-129. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a4/
[1] Tanaka K., “Infinitely many periodic solutions for the equation: $u_{tt}-u_{xx}\pm |u|^{\rho-1}u=f(x,t)$. II”, Trans. Amer. Math. Soc., 307 (1988), 615–645 | DOI | MR | Zbl
[2] Plotnikov P. I., “Suschestvovanie schetnogo mnozhestva periodicheskikh reshenii zadachi o vynuzhdennykh kolebaniyakh dlya slabo nelineinogo volnovogo uravneniya”, Matem. sb., 136 (1988), 546–560 | MR
[3] Pokhozhaev S. I., “Ob odnom podkhode k nelineinym uravneniyam”, DAN SSSR, 247 (1979), 1327–1331 | MR | Zbl
[4] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956 | MR
[5] Rabinowitz P. H., “Multiple critical points of perturbed symmetric functionals”, Trans. Amer. Math. Soc., 272 (1982), 753–769 | DOI | MR | Zbl
[6] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR
[7] Gradshtein I. S, Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971
[8] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980 | MR
[9] Bahri A., Berestycki H., “A perturbation method in critical point theory and applications”, Trans. Amer. Math. Soc., 267 (1981), 1–32 | DOI | MR | Zbl
[10] Ambrosetti A., Rabinowitz P. H., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14 (1973), 349–381 | DOI | MR | Zbl