Endomorphisms of semimodules over semirings with an idempotent operation
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 91-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary endomorphism $A$ of the free semimodule $K^n$ over an Abelian semiring $K$ with operations $\oplus$ and $\odot$ it is shown under the assumption that $\oplus$ is idempotent (and under certain other restrictions on $K$) that there exists a nontrivial “spectrum”, i.e., there exist a $\lambda\in K$ and a nontrivial subsemimodule $J$ such that $Af=\lambda\odot f$ for any $f\in J$. The same result is also obtained for endomorphism analogues of integral operators (in the sense of the theory of idempotent integration). In terms of this spectrum investigations are made of the asymptotic behavior of endomorphisms under iteration and of convergence of the “Neumann series” appearing in the solution of the equations $y=Ay\oplus f$. The simplest examples are connected with the semiring $\{K=R\cup \{-\infty\},\ \oplus=\max,\ \odot=+\}$ and arise, for example, in dynamic programming problems.
@article{IM2_1992_38_1_a3,
     author = {P. I. Dudnikov and S. N. Samborskii},
     title = {Endomorphisms of semimodules over semirings with an idempotent operation},
     journal = {Izvestiya. Mathematics },
     pages = {91--105},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a3/}
}
TY  - JOUR
AU  - P. I. Dudnikov
AU  - S. N. Samborskii
TI  - Endomorphisms of semimodules over semirings with an idempotent operation
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 91
EP  - 105
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a3/
LA  - en
ID  - IM2_1992_38_1_a3
ER  - 
%0 Journal Article
%A P. I. Dudnikov
%A S. N. Samborskii
%T Endomorphisms of semimodules over semirings with an idempotent operation
%J Izvestiya. Mathematics 
%D 1992
%P 91-105
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a3/
%G en
%F IM2_1992_38_1_a3
P. I. Dudnikov; S. N. Samborskii. Endomorphisms of semimodules over semirings with an idempotent operation. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a3/

[1] Maslov V. P., Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987, 408 pp. | MR

[2] Maslov V. P., “O novom printsipe superpozitsii dlya zadach optimizatsii”, UMN, 42:3 (1987), 39–48 | MR | Zbl

[3] Lankaster P., Teoriya matrits, Mir, M., 1978, 280 pp. | MR

[4] Leng S., Algebra, Mir, M., 1968, 552 pp.

[5] Zvonkin A. K., Shubin M. A., “Nestandartnyi analiz i singulyarnye vozmuscheniya obyknovennykh differentsialnykh uravnenii”, UMN, 39:2 (1984), 77–127 | MR | Zbl

[6] Devis M., Prikladnoi nestandartnyi analiz, Mir, M., 1980, 236 pp. | MR

[7] Maslov V. I., “Novyi podkhod k obobschennym resheniyam nelineinykh sistem”, DAN SSSR, 29:1 (1987), 37–41 | MR | Zbl