Free topological groups of metrizable spaces
Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 657-680

Voir la notice de l'article provenant de la source Math-Net.Ru

The free topological group $F(X)$ of an arbitrary metrizable space $X$ is complete in the Weil sense. If $Y$ is a closed subspace of a metrizable space $X$, then $F(Y)$ is a topological subgroup of $F(X)$.
@article{IM2_1991_37_3_a9,
     author = {V. V. Uspenskii},
     title = {Free topological groups of metrizable spaces},
     journal = {Izvestiya. Mathematics },
     pages = {657--680},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a9/}
}
TY  - JOUR
AU  - V. V. Uspenskii
TI  - Free topological groups of metrizable spaces
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 657
EP  - 680
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a9/
LA  - en
ID  - IM2_1991_37_3_a9
ER  - 
%0 Journal Article
%A V. V. Uspenskii
%T Free topological groups of metrizable spaces
%J Izvestiya. Mathematics 
%D 1991
%P 657-680
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a9/
%G en
%F IM2_1991_37_3_a9
V. V. Uspenskii. Free topological groups of metrizable spaces. Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 657-680. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a9/