Free topological groups of metrizable spaces
Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 657-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

The free topological group $F(X)$ of an arbitrary metrizable space $X$ is complete in the Weil sense. If $Y$ is a closed subspace of a metrizable space $X$, then $F(Y)$ is a topological subgroup of $F(X)$.
@article{IM2_1991_37_3_a9,
     author = {V. V. Uspenskii},
     title = {Free topological groups of metrizable spaces},
     journal = {Izvestiya. Mathematics },
     pages = {657--680},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a9/}
}
TY  - JOUR
AU  - V. V. Uspenskii
TI  - Free topological groups of metrizable spaces
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 657
EP  - 680
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a9/
LA  - en
ID  - IM2_1991_37_3_a9
ER  - 
%0 Journal Article
%A V. V. Uspenskii
%T Free topological groups of metrizable spaces
%J Izvestiya. Mathematics 
%D 1991
%P 657-680
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a9/
%G en
%F IM2_1991_37_3_a9
V. V. Uspenskii. Free topological groups of metrizable spaces. Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 657-680. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a9/

[1] Tkachenko M. G., “O polnote svobodnykh abelevykh topologicheskikh grupp”, DAN SSSR, 269:2 (1983), 299–303 | MR | Zbl

[2] Przymusiński T., “Collectionwise normality and extensions of continuous functions”, Fundam. Math., 98:1 (1978), 75–81 | MR | Zbl

[3] Pestov V. G., “Nekotorye svoistva svobodnykh topologicheskikh grupp”, Vestnik mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1982, no. 1, 35–37 | MR | Zbl

[4] Nereshennye zadachi topologicheskoi algebry, Preprint, Shtiintsa, Kishinev, 1985

[5] Samuel P., “On universal mappings and free topological groups”, Bull. Amer. Math. Soc., 54:6 (1948), 591–598 | DOI | MR | Zbl

[6] Nummela E. C., “Uniform free topological groups and Samuel compactifications”, Topology and Appl., 13:1 (1982), 77–83 | DOI | MR | Zbl

[7] Hunt D. C., Morris S. A., “Free subgroups of free topological groups”, Proc. 2nd Internal conf. on the theory of groups (Canberra, 1973), Lecture Notes in Math., 372, Springer-Verlag, Berlin et al., 1974, 377–387 | MR

[8] Borges C. J. R., “On stratifiable spaces”, Pacif. J. Math., 17:1 (1966), 1–16 | MR | Zbl

[9] Gruenhage G., Handbook of set-theoretic topology, eds. K. Kunen, J. E. Yaughan, North-Holland, Amsterdam et al., 1984 | MR

[10] Graev M. I., “Svobodnye topologicheskie gruppy”, Izv. AN SSSR. Ser. matem., 12:3 (1948), 279–324 | MR | Zbl

[11] Mack J., Morris S. A., Ordman E. T., “Free topological groups and the projective dimension of a locally compact abelian group”, Proc. Amer. Math. Soc., 40:1 (1973), 303–308 | DOI | MR | Zbl

[12] Tkachenko M. G., “O polnote topologicheskikh grupp”, Sib. matem. zhurn., 25:1 (1984), 146–158 | MR | Zbl

[13] Arkhangelskii A. V., “Algebraicheskie ob'ekty, porozhdennye topologicheskoi strukturoi”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 25, VINITI AN SSSR, M., 1987, 141–198 | MR

[14] Uspenskii V. V., “O topologii svobodnogo lokalno vypuklogo prostranstva”, DAN SSSR, 270:6 (1983), 1334–1337 | MR | Zbl

[15] Uspenskii V. V., “K teorii svobodnykh topologicheskikh grupp”, 18 Vsesoyuznaya algebraicheskaya konferentsiya, Tezisy soobschenii. Ch. II (Kishinev, 16–18 sentyabrya 1985 g.), Kishinev, 1985, 229

[16] Uspenskii V. V., “O podgruppakh svobodnykh topologicheskikh grupp”, DAN SSSR, 285:5 (1985), 1070–1072 | MR | Zbl

[17] Markov A. A., “O svobodnykh topologicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 9:1 (1945), 3–64

[18] Raikov D. A., “Svobodnye lokalno vypuklye prostranstva ravnomernykh prostranstv”, Matem. sb., 63:4 (1964), 582–590 | MR | Zbl

[19] Kantorovich L. V., Rubinshtein G. Sh., “Ob odnom funktsionalnom prostranstve i nekotorykh ekstremalnykh zadachakh”, DAN SSSR, 115:6 (1957), 1058–1061 | Zbl

[20] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[21] Burbaki I., Integrirovanie. Vektornoe integrirovanie. Mera Khaara. Svertka i predstavleniya, Nauka, M., 1970 | MR

[22] Bessaga C., Pelczyński A., Selected topics in infinite-dimensional topology, PWN, Warszawa, 1975 | MR | Zbl

[23] Guran I. I., “O topologicheskikh gruppakh, blizkikh k finalno kompaktnym”, DAN SSSR, 256:6 (1981), 1305–1307 | MR | Zbl

[24] Arkhangelskii A. V., “Klassy topologicheskikh grupp”, UMN, 36:3 (1981), 127–146 | MR

[25] Uspenskii V. V., “Why compact groups are dyadic”, Proc. 6th Prague topological symp. (1986), ed. Frolik Z., Heldermann Verlag, Berlin, 1988, 601–610 | MR

[26] Uspenskii V. V., “Universalnaya topologicheskaya gruppa so schetnoi bazoi”, Funktsion. analiz i ego prilozh., 20:2 (1986), 86–87 | MR | Zbl

[27] Ngueh To Nhu., “Investigating the ANR-property of metric spaces”, Fundam. Math., 124:3 (1984), 243–254 | MR

[28] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968 | MR