An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential
Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 611-629

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonselfadjoint Sturm-Liouville operator $L=-d^2/dx^2+q(x)$ $(-\infty$ with a periodic potential which can be extended holomorphically to the upper half plane, is considered.
@article{IM2_1991_37_3_a7,
     author = {L. A. Pastur and V. A. Tkachenko},
     title = {An inverse problem for a class of one-dimensional {Shrodinger} operators with a complex periodic potential},
     journal = {Izvestiya. Mathematics },
     pages = {611--629},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/}
}
TY  - JOUR
AU  - L. A. Pastur
AU  - V. A. Tkachenko
TI  - An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 611
EP  - 629
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/
LA  - en
ID  - IM2_1991_37_3_a7
ER  - 
%0 Journal Article
%A L. A. Pastur
%A V. A. Tkachenko
%T An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential
%J Izvestiya. Mathematics 
%D 1991
%P 611-629
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/
%G en
%F IM2_1991_37_3_a7
L. A. Pastur; V. A. Tkachenko. An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential. Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 611-629. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/