An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential
Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 611-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonselfadjoint Sturm-Liouville operator $L=-d^2/dx^2+q(x)$ $(-\infty$ with a periodic potential which can be extended holomorphically to the upper half plane, is considered.
@article{IM2_1991_37_3_a7,
     author = {L. A. Pastur and V. A. Tkachenko},
     title = {An inverse problem for a class of one-dimensional {Shrodinger} operators with a complex periodic potential},
     journal = {Izvestiya. Mathematics },
     pages = {611--629},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/}
}
TY  - JOUR
AU  - L. A. Pastur
AU  - V. A. Tkachenko
TI  - An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 611
EP  - 629
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/
LA  - en
ID  - IM2_1991_37_3_a7
ER  - 
%0 Journal Article
%A L. A. Pastur
%A V. A. Tkachenko
%T An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential
%J Izvestiya. Mathematics 
%D 1991
%P 611-629
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/
%G en
%F IM2_1991_37_3_a7
L. A. Pastur; V. A. Tkachenko. An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential. Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 611-629. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/

[1] Marchenko V. A., Ostrovskii I. V., “Kharakteristika spektra operatora Khilla”, Matem. sb., 97:4 (1975), 540–606 | MR | Zbl

[2] Gasymov M. G., “Spektralnyi analiz odnogo klassa nesamosopryazhennykh differentsialnykh operatorov vtorogo poryadka”, Funkts. analiz i ego prilozh., 14:1 (1980), 14–19 | MR | Zbl

[3] Guillemin V., Uribe A., “Hardy functions and inverse spectral method”, Comm. in Part. Differ. Equat., 8(13) (1983), 1455–1474 | DOI | MR | Zbl

[4] Pastur L. A., Tkachenko V. A., “K spektralnoi teorii operatorov Shredingera s periodicheskimi kompleksnoznachnymi potentsialami”, Funkts. analiz i ego prilozh., 22:2 (1988), 85–86 | MR

[5] Pastur L. A., Tkachenko V. A., “K spektralnoi teorii odnomernogo operatora Shredingera s predelno-periodicheskim potentsialom”, DAN SSSR, 279:3 (1984), 1050–1053 | MR | Zbl

[6] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, ed. S. P. Novikov, Nauka, M., 1980, 320 pp. | MR

[7] Marchenko V. A., Ostrovskii I. V., “Approksimatsiya periodicheskikh potentsialov konechnozonnymi”, Vestnik KhGU, 1980, no. 205, 4–40 | MR | Zbl

[8] Lyantse V. A., “Analog obratnoi zadachi teorii rasseyaniya dlya nesamosopryazhennogo operatora”, Matem. sb., 72(114):4 (1967), 537–557 | MR | Zbl

[9] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977, 331 pp. | MR

[10] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965, 448 pp.

[11] Smirnov V. I., Kurs vysshei matematiki, t. 4, GITTL, M., 1958, 812 pp.