An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential
Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 611-629
Voir la notice de l'article provenant de la source Math-Net.Ru
A nonselfadjoint Sturm-Liouville operator $L=-d^2/dx^2+q(x)$ $(-\infty$ with a periodic potential which can be extended holomorphically to the upper half plane, is considered.
@article{IM2_1991_37_3_a7,
author = {L. A. Pastur and V. A. Tkachenko},
title = {An inverse problem for a class of one-dimensional {Shrodinger} operators with a complex periodic potential},
journal = {Izvestiya. Mathematics },
pages = {611--629},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/}
}
TY - JOUR AU - L. A. Pastur AU - V. A. Tkachenko TI - An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential JO - Izvestiya. Mathematics PY - 1991 SP - 611 EP - 629 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/ LA - en ID - IM2_1991_37_3_a7 ER -
%0 Journal Article %A L. A. Pastur %A V. A. Tkachenko %T An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential %J Izvestiya. Mathematics %D 1991 %P 611-629 %V 37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/ %G en %F IM2_1991_37_3_a7
L. A. Pastur; V. A. Tkachenko. An inverse problem for a class of one-dimensional Shrodinger operators with a complex periodic potential. Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 611-629. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a7/