The Boutroux ansatz for the second Painleve equation in the complex domain
Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 587-609.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic representation of the general solution of the second Painlevé equation is constructed in a sector of the complex $z$-plane. The principal term of the asymptotics is an elliptic function whose modulus and argument are functions of $\arg z$. Explicit expressions of these functions are given, and an approximation as $|z|\to\infty$ is proved for the initial Painlevé function outside a small neighborhood of its lattice of poles.
@article{IM2_1991_37_3_a6,
     author = {V. Yu. Novokshenov},
     title = {The {Boutroux} ansatz for the second {Painleve} equation in the complex domain},
     journal = {Izvestiya. Mathematics },
     pages = {587--609},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a6/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - The Boutroux ansatz for the second Painleve equation in the complex domain
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 587
EP  - 609
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a6/
LA  - en
ID  - IM2_1991_37_3_a6
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T The Boutroux ansatz for the second Painleve equation in the complex domain
%J Izvestiya. Mathematics 
%D 1991
%P 587-609
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a6/
%G en
%F IM2_1991_37_3_a6
V. Yu. Novokshenov. The Boutroux ansatz for the second Painleve equation in the complex domain. Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 587-609. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a6/

[1] Painleve P., “Sur les equations differentielles du second ordre et d'ordre superieur, dont l'integrale generale est uniforme”, Acta Math., 25 (1902), 1–86 | DOI | MR

[2] Gambier B., “Sur les equations differentielles du second ordre et du premier degre dont l'integrale est a point critique fixes”, Acta Math., 33 (1910), 1–55 | DOI | MR

[3] Boutroux P., “Recherches sur les transcendencets de M. Painleve et I'etude asymptotique des equations differentielles de second ordre”, Annales l'Ecole Norm. Sup., 13 (1913), 255–375 | MR

[4] Boutroux P., “Etude asymptotique de transcendents de M. Painleve dont est les solutions des equations differentielle de second ordre”, Annales l'Ecole Norm. Sup., 31 (1914), 99–155 | MR

[5] Puankare A., Izbrannye trudy, t. 3, Nauka, M., 1974, 772 pp.

[6] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1963, 452 pp. | MR

[7] Its A. R., Novokshenov V. Yu., “Isomonodromic deformation method in the theory of Painleve equations”, Lect. Notes in Math., 1191, Springer-Verlag, 1986, 313 p | MR | Zbl

[8] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977, 622 pp.

[9] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya, I”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, 1985, 7–150 | MR

[10] Flaschka H., Newell A. C., “Monodromy – and spectrum preserving deformations, I”, Comm. Math. Phys., 76 (1980), 67–116 | DOI | MR

[11] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp. | MR | Zbl

[12] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 3, Nauka, M., 1967, 300 pp. | MR

[13] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962, 1100 pp. | MR

[14] Kapaev A. A., “Asimptoticheskie formuly dlya funktsii Penleve vtorogo roda”, TMF, 77:3 (1988), 323–332 | MR | Zbl