Topologies on abelian groups
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 445-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

A filter $\varphi$ on an abelian group $G$ is called a $T$-filter if there exists a Hausdorff group topology under which $\varphi$ converges to zero. $G\{\varphi\}$ will denote the group $G$ with the largest topology among those making $\varphi$ converge to zero. This method of defining a group topology is completely equivalent to the definition of an abstract group by defining relations. We shall obtain characterizations of $T$-filters and of $T$-sequences; among these, we shall pay particular attention to $T$-sequences on the integers. The method of $T$-sequences will be used to construct a series of counterexamples for several open problems in topological algebra. For instance there exists, on every infinite abelian group, a topology distinguishing between sequentiality and the Frechet–Urysohn property (this solves a problem posed by V. I. Malykhin); we also find a topology on the group of integers admitting no nontrivial continuous character, thus solving a problem of Nienhuys. We show also that on every infinite abelian group there exists a free ultrafilter which is not a $T$-ultrafilter.
@article{IM2_1991_37_2_a8,
     author = {E. G. Zelenyuk and I. V. Protasov},
     title = {Topologies on abelian groups},
     journal = {Izvestiya. Mathematics },
     pages = {445--460},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a8/}
}
TY  - JOUR
AU  - E. G. Zelenyuk
AU  - I. V. Protasov
TI  - Topologies on abelian groups
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 445
EP  - 460
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a8/
LA  - en
ID  - IM2_1991_37_2_a8
ER  - 
%0 Journal Article
%A E. G. Zelenyuk
%A I. V. Protasov
%T Topologies on abelian groups
%J Izvestiya. Mathematics 
%D 1991
%P 445-460
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a8/
%G en
%F IM2_1991_37_2_a8
E. G. Zelenyuk; I. V. Protasov. Topologies on abelian groups. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 445-460. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a8/

[1] Protasov I. V., “Mnogoobraziya topologicheskikh algebr”, Sib. matem. zhurn., 25:5 (1984), 125–134 | MR | Zbl

[2] Nereshënnye zadachi topologicheskoi algebry, Shtiintsa, Kishinëv, 1985

[3] Zelenyuk E. G., Protasov I. V., “O topologiyakh na gruppe tselykh chisel”, Bakinskaya mezhdunar. topologicheskaya konf., Tez. dokl. Ch. 2, Baku, 1987, 121

[4] Zelenyuk E. G., Protasov I. V., “O topologiyakh na abelevykh gruppakh”, 19 Vsesoyuznaya algebraicheskaya konf., Tez. dokl. Ch. 1, Lvov, 1987, 110

[5] Graev M. I., “Svobodnye topologicheskie gruppy”, Izv. AN SSSR. Ser. matem., 12:3 (1948), 279–324 | MR | Zbl

[6] Marin E. I., “Ekonomnye topologii na gruppe tselykh chisel”, UMN, 41:3 (1986), 193–194 | MR | Zbl

[7] Ajtai M., Havas I., Komlos J., “Every group admits a bad topology”, Studies in Pure Mathemat., 1983, 21–34 | MR | Zbl

[8] Comfort W. W., “Ultrafilters: some old and some new results”, Bull. Amer. Math. Soc., 83:4 (1977), 417–455 | DOI | MR | Zbl

[9] Nienhuys J. W., “Construction of group topologies on abelian groups”, Fund. Math., 72 (1972), 101–116 | MR

[10] Zelenyuk E. G., Protasov I. V., “Potentsialno kompaktnye abelevy gruppy”, Matem. sb., 181:2 (1990), 279–285 | MR | Zbl