The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 397-419.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists an infinite involutive family of integrals of hydrodynamic type for diagonal Hamiltonian systems of quasilinear equations; the completeness of the family is also proved, and a basis for it is constructed for Whitham's equation. Higher integrals and symmetries of these systems are found.
@article{IM2_1991_37_2_a6,
     author = {S. P. Tsarev},
     title = {The geometry of {Hamiltonian} systems of hydrodynamic type. {The} generalized hodograph method},
     journal = {Izvestiya. Mathematics },
     pages = {397--419},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a6/}
}
TY  - JOUR
AU  - S. P. Tsarev
TI  - The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 397
EP  - 419
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a6/
LA  - en
ID  - IM2_1991_37_2_a6
ER  - 
%0 Journal Article
%A S. P. Tsarev
%T The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method
%J Izvestiya. Mathematics 
%D 1991
%P 397-419
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a6/
%G en
%F IM2_1991_37_2_a6
S. P. Tsarev. The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 397-419. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a6/

[1] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[2] Novikov S. P., “Geometriya konservativnykh sistem gidrodinamicheskogo tipa. Metod usredneniya dlya teoretiko-polevykh sistem”, UMN, 40:4 (1985), 79–89 | MR

[3] Kats E. I., Lebedev V. V., “Nelineinaya dinamika smektikov s orientatsionnoi uporyadochennostyu v sloe”, Zhurn. eksper. i teor. fiziki, 88:3 (1985), 823–834 | MR

[4] Tsarëv S. P., “Gamiltonovost statsionarnykh i obraschennykh uravnenii mekhaniki sploshnykh sred i matematicheskoi fiziki”, Matem. zametki, 46:1 (1989), 105–111 | MR | Zbl

[5] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[6] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[7] Krichever I. M., “Metod usredneniya dlya dvumernykh “integriruemykh” uravnenii”, Funkts. analiz i ego prilozh., 22:3 (1988), 37–52 | MR | Zbl

[8] Avilov V. V., Krichever I. M., Novikov S. P., “Evolyutsiya uitemovskoi zony v teorii Kortevega–de Friza”, DAN SSSR, 295:2 (1987), 345–349 | MR | Zbl

[9] Pavlov M. V., “Nelineinoe uravnenie Shredingera i metod usredneniya Bogolyubova–Uizema”, Teor. i matem. fizika, 71:3 (1987), 351–356 | MR | Zbl

[10] Gurevich A. V., Krylov A. L., “Bezdissipativnye udarnye volny v sredakh s polozhitelnoi dispersiei”, Zhurn. eksper. i teor. fiziki, 92:5 (1987), 1684–1699

[11] Potëmin G. V., “Algebro-geometricheskoe postroenie avtomodelnykh reshenii uravnenii Uizema”, UMN, 43:5 (1988), 211–212 | MR

[12] Kupershmidt B. A., Manin Yu. I., “Uravneniya dlinnykh voln so svobodnoi poverkhnostyu. II: Gamiltonova struktura i vysshie uravneniya”, Funkts. analiz i ego prilozh., 12:1 (1978), 25–37 | MR | Zbl

[13] Zakharov V. E., “Uravneniya Benni i kvaziklassicheskoe priblizhenie v metode obratnoi zadachi”, Funkts. analiz i ego prilozh., 14:2 (1980), 15–24 | MR | Zbl

[14] Geogdzhaev V. V., “Reshenie uravnenii Benni metodom obratnoi zadachi rasseyaniya”, Teor. i matem. fizika, 73:2 (1987), 255–263 | MR | Zbl

[15] Dubrovin B. A., Novikov S. P., “O skobkakh Puassona gidrodinamicheskogo tipa”, DAN SSSR, 279:2 (1984), 294–297 | MR | Zbl

[16] Tsarëv S. P., “O skobkakh Puassona i odnomernykh gamiltonovykh sistemakh gidrodinamicheskogo tipa”, DAN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[17] Mokhov O. I., “O skobkakh Puassona tipa Dubrovina–Novikova (DN-skobki)”, Funkts. analiz i ego prilozh., 22:4 (1988), 92–93 | MR | Zbl

[18] Pavlov M. V., Gamiltonov formalizm uravnenii elektroforeza. Integriruemye uravneniya gidrodinamiki, Preprint No 17, ITF, M., 1987

[19] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, 2-e izd., Nauka, M., 1978 | MR | Zbl

[20] Babskii V. G., Zhukov M. Yu., Yudovich V. I., Matematicheskaya teoriya elektroforeza, Nauk. dumka, Kiev, 1983

[21] Zhukov M. Yu., Yudovich V. I., “Matematicheskaya teoriya izotakhoforeza”, DAN SSSR, 287:2 (1982), 334–338

[22] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[23] Tsarëv S. P., Polugamiltonov formalizm diagonalnykh sistem gidrodinamicheskogo tipa i integriruemost uravnenii khromatografii i elektroforeza, Preprint No 106, LIIAN, L., 1989

[24] Teshukov V. M., Giperbolicheskie sistemy, dopuskayuschie netrivialnuyu gruppu Li–Beklunda, Preprint No 106, LIIAN, L., 1989

[25] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: metody i prilozheniya, 2-e izd., Nauka, M., 1986 | MR

[26] Kartan E., Vneshnie differentsialnye sistemy i ikh geometricheskie prilozheniya, MGU, M., 1962

[27] Egorov D. F., Raboty po differentsialnoi geometrii, Nauka, M., 1970 | MR

[28] Sheftel M. B., “O beskonechnoi nekommutativnoi algebre Li–Beklunda, svyazannoi s uravneniyami odnomernoi gazovoi dinamiki”, Teor. i matem. fizika, 56:3 (1983), 368–386 | MR | Zbl

[29] Sheftel M. B., “Ob integrirovanii gamiltonovykh sistem gidrodinamicheskogo tipa s dvumya zavisimymi peremennymi s pomoschyu gruppy Li–Beklunda”, Funkts. analiz i ego prilozh., 20:3 (1986), 70–79 | MR | Zbl

[30] Dzyaloshinskii I. E., Volovick G. E., “Poisson brackets in condensed matter physics”, Ann. of Phys., 125:1 (1980), 67–97 | DOI | MR

[31] Holm D. D., Kupershmidt B. A., “Poisson brackets and Clebsch representation for magnetohydrodynamics, multifluid plasmas and electricity”, Physica D., 6:8 (1983), 347–363 | DOI | MR

[32] Holm D. D., Kupershmidt B. A., “Hamiltonian formulation of ferromagnetic hydrodynamics”, Phys. Lett. A., 129:2 (1988), 93–100 | DOI | MR

[33] Holm D. D., “Hamiltonian formulation of the baroclinic quasigeostropmc flow”, Phys. Fluids, 29:1 (1986), 7–8 | DOI | MR | Zbl

[34] Holm D. D., “Hamiltonian dynamics of a charged fluid, including electrohydrodynamics and magnetohydrodynamics”, Phys. Lett. A., 114:3 (1986), 137–141 | DOI | MR

[35] Holm D. D., “Hamiltonian structure for Alfven-wave turbulence equations”, Phys. Lett. A., 108:9 (1985), 445–447 | DOI | MR

[36] Bao D., Marsden J. E., Walton R., “The hamiltonian structure of general relativistic perfect fluids”, Comm. Math. Phys., 99:3 (1985), 319–345 | DOI | MR

[37] Workshop on Mathematical Methods in hydrodynamics and integrability in dynamical systems, Amer. Inst. Phys. Conf. Proceedings, 88, 1981

[38] Flaschka H., Forest M. G., McLaughlin D. W., “Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation”, Comm. Pure Appl. Math., 33:6 (1980), 739–784 | DOI | MR | Zbl

[39] Levermore C. D., “The hyperbolic nature of the zero dispersion KdV limit”, Comm. Partial Diff. Eq., 13:4 (1988), 495–514 | DOI | MR | Zbl

[40] Ercolani N., Forest M. G., McLaughlin D. W., Montgomery R., “Hamiltonian structure of the modulation equations of a sine-Gordon wavetrains”, Duke Math. J., 55:4 (1987), 949–983 | DOI | MR | Zbl

[41] Chierchia L., Ercolani N., McLaughlin D. W., “On the weak limit of rapidly oscillating waves”, Duke Math. J., 55:4 (1987), 759–764 | DOI | MR | Zbl

[42] Bikbaev R. F., Novokshenov V. Yu., “Self-similar solution of the Whitham equations and the Korteweg–de Vries equation with finite-gap boundary-conditions”, Proc. III Internat. Workshop “Nonlinear and turbulent processes in physics”, 1, Kiev, 1987, 32–35

[43] Hayes W. D., “Group velocity and nonlinear dispersive wave propagation”, Proc. Royal Soc. (London), 332 (1973), 199–221 | DOI | MR | Zbl

[44] Forest M. G., McLaughlin D. W., “Modulation of sinh-Gordon and sine-Gordon wavetrains”, Studies Appl. Math., 68:1 (1983), 11–59 | MR | Zbl

[45] Benney D. J., “Some properties of long nonlinear waves”, Studies Appl. Math., 52:1 (1973), 45–56

[46] Gibbons J., “Collisionless Boltzmann equations and integrable moment equations”, Physica D., 3:3 (1981), 503–511 | DOI | MR

[47] Nutku Y., “On a new class of completely integrable systems. 2: Multi-hamiltonian structure”, J. Math. Phys., 28:11 (1987), 2579–2585 | DOI | MR | Zbl

[48] Darboux G., Lecons sur les systémes orthogonaux et les coordonnées curvilignes, Paris, 1910

[49] Bianchi L., Opere. V. III, Roma, 1956 | Zbl

[50] Magri F., “A simple model of the integrable Hamiltonian system”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[51] Verosky J., “Higher-order symmetries of the compressible one-dimensional isentropic fluid equations”, J. Math. Phys., 25:4 (1984), 884–888 | DOI | MR | Zbl

[52] Olver P. J., Nutku Y., Hamiltonian structures for systems of hyperbolic conservation laws, Preprint, 1987, 35 pp. | MR