Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1991_37_2_a5, author = {V. R. Ol'shevskii}, title = {Change of {Jordan} structure of $G$-selfadjoint operators and selfadjoinl operator-functions under small perturbatios}, journal = {Izvestiya. Mathematics }, pages = {371--395}, publisher = {mathdoc}, volume = {37}, number = {2}, year = {1991}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a5/} }
TY - JOUR AU - V. R. Ol'shevskii TI - Change of Jordan structure of $G$-selfadjoint operators and selfadjoinl operator-functions under small perturbatios JO - Izvestiya. Mathematics PY - 1991 SP - 371 EP - 395 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a5/ LA - en ID - IM2_1991_37_2_a5 ER -
%0 Journal Article %A V. R. Ol'shevskii %T Change of Jordan structure of $G$-selfadjoint operators and selfadjoinl operator-functions under small perturbatios %J Izvestiya. Mathematics %D 1991 %P 371-395 %V 37 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a5/ %G en %F IM2_1991_37_2_a5
V. R. Ol'shevskii. Change of Jordan structure of $G$-selfadjoint operators and selfadjoinl operator-functions under small perturbatios. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 371-395. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a5/
[1] Gohberg I., Kaashoek M. A., “Unsolved problems in matrix and operator theory. 1: Parti multiplicities and additive perturbations”, Integr. Equat. and Oper Theory, 1 (1978), 278–283 | DOI | MR | Zbl
[2] Markus A. S., Parilis E. E., “Ob izmenenii zhordanovoi struktury matritsy pri malykh vozmuscheniyakh”, Lineinye operatory, Kishinëv, 1980, 98–109 | MR | Zbl
[3] den Boer H., Thijsse G. Ph. A., “Semi-stability of sums of partial multiplicities under additve perturbation”, Integr. Equat. and Oper. Theory, 3 (1980), 23–42 | DOI | MR | Zbl
[4] Maltsev A. I., Osnovy lineinoi algebry, Nauka, M., 1975
[5] Gohberg I., Lancaster P., Rodman L., Matrices and indefinite scalar products, Birkhauser Verlag, Basel etc., 1983 | MR
[6] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–4 | MR | Zbl
[7] Kostyuchenko A. G., Shkalikov A. A., “Samosopryazhennye kvadratichnye puchki operatorov i ellipticheskie zadachi”, Funktsnon. analiz i ego prilozh., 17:2 (1983), 38–61 | MR | Zbl
[8] Ran A. C. M., Rodman L., “Stability of invariant maximal semidefinite subspaces, I”, Linear Algebra Appl., 62 (1984), 51–86 | DOI | MR | Zbl
[9] Olshevskii V. R., “Ob izmenenii zhordanovoi struktury $G$-samosopryazhennykh operatorov i samosopryazhennykh operator-funktsii pri malykh vozmuscheniyakh”, Funktsion. analiz i ego prilozh., 22:3 (1988), 79–80 | MR | Zbl
[10] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR
[11] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR
[12] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz v zadachakh, Nauka, M., 1969 | MR | Zbl
[13] Ran A. C. M., Rodman L., “Stability of invariant maximal semidefinite subspaces. II: Applications: selfadjoint rational matrix functions, algebraic Riccatti equations”, Linear Algebra Appl., 63 (1984), 51–86 | DOI | MR
[14] Markus A. S., “O golomorfnykh operator-funktsiyakh”, DAN SSSR, 119:6 (1958), 1099–1102 | MR | Zbl
[15] Kaashoek M. A., van der Mee C. V. M., Rodman L., “Analytic operator functions with compact spectrum. I: Spectral nodes, linearization and equivalence”, Integr. Equat. and Oper. Theory, 4 (1981), 504–547 | DOI | MR | Zbl
[16] Kaashoek M. A., van der Mee C. V. M., Rodman L., “Analytic operator functions with compact spectrum. II: Spectral pairs and factorization”, Integr. Equat. and Oper. Theory, 5 (1982), 791–829 | DOI | MR
[17] Kaashoek M. A., van der Mee C. V. M., Rodman L., “Analytic operator functions with compact spectrum. III: Hilbert space case: Inverse problem and applications”, J. of Oper. Theory, 10 (1983), 219–250 | MR | Zbl
[18] Pierce S., Rodman L., “Congruences and norms of hermitian matrices”, Canadian J. of Math., XXXIX:6 (1987), 1446–1458 | MR