Asymptotic solution of a variational inequality modelling a friction
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 337-369
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of minimizing the nondifferentiable functional
$$
\mu^2(\nabla u,\nabla u)_\Omega\times (u,u)_\Omega -2(f,u)_\Omega+\gamma(|u|,g)_{\partial\Omega}
$$
is considered. An asymptotic solution of the corresponding variational inequality is constructed and justified under the assumption that $\mu$ or $\gamma$ is a small parameter. Also, formal asymptotic representations are obtained for singular surfaces which characterize a change in the type of boundary conditions. For $\mu\to 0$ a modification of the Vishik–Lyusternik method is used, and exponential boundary layers arise. If $\gamma\to 0$, then the boundary layer has only power growth; the principal term of the asymptotic expansion of the solution of the problem in a multidimensional region $\Omega$ and the complete asymptotic expansion for the case $\Omega\subset\mathbf R^2$ are obtained.
@article{IM2_1991_37_2_a4,
author = {S. A. Nazarov},
title = {Asymptotic solution of a variational inequality modelling a friction},
journal = {Izvestiya. Mathematics },
pages = {337--369},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/}
}
S. A. Nazarov. Asymptotic solution of a variational inequality modelling a friction. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 337-369. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/