Asymptotic solution of a variational inequality modelling a friction
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 337-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of minimizing the nondifferentiable functional $$ \mu^2(\nabla u,\nabla u)_\Omega\times (u,u)_\Omega -2(f,u)_\Omega+\gamma(|u|,g)_{\partial\Omega} $$ is considered. An asymptotic solution of the corresponding variational inequality is constructed and justified under the assumption that $\mu$ or $\gamma$ is a small parameter. Also, formal asymptotic representations are obtained for singular surfaces which characterize a change in the type of boundary conditions. For $\mu\to 0$ a modification of the Vishik–Lyusternik method is used, and exponential boundary layers arise. If $\gamma\to 0$, then the boundary layer has only power growth; the principal term of the asymptotic expansion of the solution of the problem in a multidimensional region $\Omega$ and the complete asymptotic expansion for the case $\Omega\subset\mathbf R^2$ are obtained.
@article{IM2_1991_37_2_a4,
     author = {S. A. Nazarov},
     title = {Asymptotic solution of a variational inequality modelling a friction},
     journal = {Izvestiya. Mathematics },
     pages = {337--369},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic solution of a variational inequality modelling a friction
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 337
EP  - 369
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/
LA  - en
ID  - IM2_1991_37_2_a4
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic solution of a variational inequality modelling a friction
%J Izvestiya. Mathematics 
%D 1991
%P 337-369
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/
%G en
%F IM2_1991_37_2_a4
S. A. Nazarov. Asymptotic solution of a variational inequality modelling a friction. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 337-369. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/

[1] Nazarov S. A., “Asimptoticheskoe reshenie variatsionnykh neravenstv dlya lineinogo operatora s malym parametrom pri starshikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 754–773 | MR | Zbl

[2] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980, 384 pp. | MR

[3] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 574 pp. | MR

[4] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[5] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Moskovskogo matem. ob-va, 16, 1967, 209–292

[6] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[7] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 3: Zadacha s vyrozhdeniem v konicheskoi tochke”, Sib. matem. zhurn., 25:6 (1984), 106–115 | MR | Zbl

[8] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 372 pp. | Zbl

[10] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161

[11] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 1: Zadacha v konuse”, Sib. matem. zhurn., 22:4 (1981), 142–163 | MR | Zbl

[12] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip Miranda–Agmona dlya resheniya ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1978), 25–82

[13] Nazarov S. A., Romashov Yu. A., “Izmenenie koeffitsienta intensivnosti pri razrushenii peremychki mezhdu dvumya kollinearnymi treschinami”, Izv. AN ArmSSR. Mekhanika, 1982, no. 4, 30–40 | Zbl

[14] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Vychislenie “koeffitsientov intensivnosti” pri sblizhenii uglovykh ili konicheskikh tochek”, ZhVM i MF, 23:2 (1983), 333–346 | MR

[15] Nazarov S. A., Vvedenie v asimptoticheskie metody teorii uprugosti, LGU, L., 1983, 120 pp.

[16] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, TGU, Tbilisi, 1981, 208 pp. | MR

[17] Kato T., Teoriya vozmuscheniya lineinykh operatorov, Mir, M., 1972, 742 pp. | Zbl

[18] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s schelyu. 2: Oblast s malym otverstiem”, Matem. sb., 103:2 (1977), 265–284 | MR

[19] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Gostekhizdat, M., L., 1950, 696 pp. | Zbl

[20] Sedov L. I., Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1976, 576 pp. | Zbl

[21] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri neregulyarnom vozmuschenii oblasti”, Probl. matem. analiza, no. 8, LGU, L., 1981, 72–153 | MR

[22] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 2: Zadacha v ogranichennoi oblasti”, Sib. matem. zhurn., 22:5 (1981), 132–152 | MR | Zbl

[23] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR

[24] Fedoryuk M. V., “Asimptotika resheniya zadachi Dirikhle dlya uravneniya Laplasa i Gelmgoltsa vo vneshnosti tonkogo tsilindra”, Izv. AN SSSR. Ser. matem., 46:1 (1981), 167–186 | MR

[25] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116:2 (1981), 187–217 | MR

[26] Nazarov S. A., Paukshto M. V., Diskretnye modeli i osrednenie v teorii uprugosti, LGU, L., 1984, 93 pp.