Asymptotic solution of a variational inequality modelling a friction
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 337-369

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of minimizing the nondifferentiable functional $$ \mu^2(\nabla u,\nabla u)_\Omega\times (u,u)_\Omega -2(f,u)_\Omega+\gamma(|u|,g)_{\partial\Omega} $$ is considered. An asymptotic solution of the corresponding variational inequality is constructed and justified under the assumption that $\mu$ or $\gamma$ is a small parameter. Also, formal asymptotic representations are obtained for singular surfaces which characterize a change in the type of boundary conditions. For $\mu\to 0$ a modification of the Vishik–Lyusternik method is used, and exponential boundary layers arise. If $\gamma\to 0$, then the boundary layer has only power growth; the principal term of the asymptotic expansion of the solution of the problem in a multidimensional region $\Omega$ and the complete asymptotic expansion for the case $\Omega\subset\mathbf R^2$ are obtained.
@article{IM2_1991_37_2_a4,
     author = {S. A. Nazarov},
     title = {Asymptotic solution of a variational inequality modelling a friction},
     journal = {Izvestiya. Mathematics },
     pages = {337--369},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic solution of a variational inequality modelling a friction
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 337
EP  - 369
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/
LA  - en
ID  - IM2_1991_37_2_a4
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic solution of a variational inequality modelling a friction
%J Izvestiya. Mathematics 
%D 1991
%P 337-369
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/
%G en
%F IM2_1991_37_2_a4
S. A. Nazarov. Asymptotic solution of a variational inequality modelling a friction. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 337-369. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a4/