On~the boundary behavior of functions in spaces of Hardy type
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 303-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a topological space with a measure $\mu$. In the product $\mathscr X=X\times (0,T]$ (or $\mathscr X=X\times [0,1)$) simple axioms are used to distinguish a family $\Gamma=\{\Gamma(x)\colon x\in X\}$ of domains for approaching the boundary of $\mathscr X$. Associated with the family $\Gamma$ is the maximal function $$ \mathscr M_\Gamma u(x)=\sup\ \{|u(y,t)|\colon (y,t)\in\Gamma(x)\}. $$ The spaces $\mathscr H^p(\mathscr X,\Gamma,\mu)$ consisting of functions $u$ continuous on $\mathscr X$ with $\mathscr M_\Gamma u\in L^p$ are introduced, along with the subspaces of them consisting of the functions having a $\Gamma$-limit a.e. The properties of the spaces $\mathscr H^p$ and the action in them of operators of smoothing type are studied. The results are applied to Hardy spaces of harmonic or holomorphic functions.
@article{IM2_1991_37_2_a2,
     author = {V. G. Krotov},
     title = {On~the boundary behavior of functions in  spaces of {Hardy} type},
     journal = {Izvestiya. Mathematics },
     pages = {303--320},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a2/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - On~the boundary behavior of functions in  spaces of Hardy type
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 303
EP  - 320
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a2/
LA  - en
ID  - IM2_1991_37_2_a2
ER  - 
%0 Journal Article
%A V. G. Krotov
%T On~the boundary behavior of functions in  spaces of Hardy type
%J Izvestiya. Mathematics 
%D 1991
%P 303-320
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a2/
%G en
%F IM2_1991_37_2_a2
V. G. Krotov. On~the boundary behavior of functions in  spaces of Hardy type. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 303-320. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a2/

[1] Fatou P., “Séries trigonométriques et séries de Tailor”, Acta Math., 30 (1906), 335–400 | DOI | MR | Zbl

[2] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., L., 1950

[3] Stein E. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[4] Rudin U., Teoriya funktsii v edinichnom share iz $C^\pi$, Mir, M., 1984 | MR | Zbl

[5] Aleksandrov A. B., “Teoriya funktsii v share”, Kompleksnyi analiz – mnogie peremennye – 2, Itogi nauki i tekhniki., 8, VINITI, M., 1985, 115–190 | Zbl

[6] Shvedenko S. V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge, polukruge i share”, Itogi nauki i tekhniki. Matematicheskii analiz, 23, 1985, 3–124 | MR | Zbl

[7] Fefferman C., Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129:3,4 (1972), 137–193 | DOI | MR | Zbl

[8] Nagel A., Rudin W., Shapiro J., “Tangential boundary behavior of functions in Dirichlettype spaces”, Ann. Math., 116:2 (1982), 331–360 | DOI | MR | Zbl

[9] Kinney J. R., “Tangential limits of functions of the class $S_\alpha$”, Proc. Amer. Math. Soc., 14:1 (1963), 68–70 | DOI | MR | Zbl

[10] Nagel A., Stein E. M., “On certain maximal functions and approach regions”, Adv. in Math., 54:1 (1984), 83–106 | DOI | MR | Zbl

[11] Coifman R. R., Meyer Y., Stein E. M., “Some new function spaces and their use in analysis”, J. Funct. Anal., 162:2 (1985), 304–335 | DOI | MR

[12] Krotov V. G., “Otsenki dlya maksimalnykh operatorov Peano v share”, Teoriya funktsii i priblizhenii, Ch. 1, Tr. 4-i Sarat. zim. shk. (25 yanv. – 5 fevr. Saratov, 1988), 119–123

[13] Krotov V. G., “Neravenstva dlya maksimalnykh operatorov Peano v poluprostranstve”, Dokl. rasshir. zased. semin. in-ta prikl. matematiki im. I. N. Vekua, 3, no. 2, Tbilisi, 1988, 61–64 | MR

[14] Krotov V. G., “Otsenki dlya maksimalnykh operatorov, svyazannykh s granichnym povedeniem, i ikh prilozheniya”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 190, 1989, 117–138 | MR

[15] Hedberg L. I., “On certain convolution inequalities”, Proc. Amer. Math. Soc., 36:2 (1972), 505–510 | DOI | MR

[16] Ahern P., Nagel A., “Strong $L^p$ estimates for maximal functions with respect to singular measures with applications to exceptional sets”, Duke Math. J., 53:2 (1986), 359–393 | DOI | MR | Zbl

[17] Colzani L., Taibleson M. H., Weiss G., “Maximal estimates for Cesaro and Riesz means on spheres”, Indiana Univ. Math. J., 33:6 (1984), 873–889 | DOI | MR | Zbl

[18] Calderon A. P., Torchinsky A., “Parabolic maximal functions associated with a distribution”, Adv. Math., 24:2 (1977), 101–171 | DOI | MR | Zbl

[19] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl