On~the boundary behavior of functions in spaces of Hardy type
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 303-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a topological space with a measure $\mu$. In the product $\mathscr X=X\times (0,T]$ (or $\mathscr X=X\times [0,1)$) simple axioms are used to distinguish a family $\Gamma=\{\Gamma(x)\colon x\in X\}$ of domains for approaching the boundary of $\mathscr X$. Associated with the family $\Gamma$ is the maximal function $$ \mathscr M_\Gamma u(x)=\sup\ \{|u(y,t)|\colon (y,t)\in\Gamma(x)\}. $$ The spaces $\mathscr H^p(\mathscr X,\Gamma,\mu)$ consisting of functions $u$ continuous on $\mathscr X$ with $\mathscr M_\Gamma u\in L^p$ are introduced, along with the subspaces of them consisting of the functions having a $\Gamma$-limit a.e. The properties of the spaces $\mathscr H^p$ and the action in them of operators of smoothing type are studied. The results are applied to Hardy spaces of harmonic or holomorphic functions.
@article{IM2_1991_37_2_a2,
     author = {V. G. Krotov},
     title = {On~the boundary behavior of functions in  spaces of {Hardy} type},
     journal = {Izvestiya. Mathematics },
     pages = {303--320},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a2/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - On~the boundary behavior of functions in  spaces of Hardy type
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 303
EP  - 320
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a2/
LA  - en
ID  - IM2_1991_37_2_a2
ER  - 
%0 Journal Article
%A V. G. Krotov
%T On~the boundary behavior of functions in  spaces of Hardy type
%J Izvestiya. Mathematics 
%D 1991
%P 303-320
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a2/
%G en
%F IM2_1991_37_2_a2
V. G. Krotov. On~the boundary behavior of functions in  spaces of Hardy type. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 303-320. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a2/