Connections between the Lebesgue extension and the Borel extension of the first class, and between the preimages corresponding to them
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 273-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new algebraic structure of a $c$-ring with refinement and a new topological structure of an $a$-space with cover are introduced. On the basis of them the notions of divisible hulls and surrounded coverings of certain types are introduced. With the help of these notions the Lebesgue extension $C\rightarrowtail L_\mu$ and the Borel extension $C\rightarrowtail BM_1$ of the first class are given a ring characterization as divisible hulls of a certain type (Theorem 1); preimages of maximal ideals of these extensions are given a topological characterization as surrounded coverings of a certain type (Theorem 2).
@article{IM2_1991_37_2_a1,
     author = {V. K. Zakharov},
     title = {Connections between the {Lebesgue} extension and the {Borel} extension of the first class, and between the preimages corresponding to them},
     journal = {Izvestiya. Mathematics },
     pages = {273--302},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a1/}
}
TY  - JOUR
AU  - V. K. Zakharov
TI  - Connections between the Lebesgue extension and the Borel extension of the first class, and between the preimages corresponding to them
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 273
EP  - 302
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a1/
LA  - en
ID  - IM2_1991_37_2_a1
ER  - 
%0 Journal Article
%A V. K. Zakharov
%T Connections between the Lebesgue extension and the Borel extension of the first class, and between the preimages corresponding to them
%J Izvestiya. Mathematics 
%D 1991
%P 273-302
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a1/
%G en
%F IM2_1991_37_2_a1
V. K. Zakharov. Connections between the Lebesgue extension and the Borel extension of the first class, and between the preimages corresponding to them. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 273-302. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a1/

[1] Burbaki N., Integrirovanie, Gl. III–V, IX, Nauka, M., 1977

[2] Semadeni Z., Banach spaces of continuous functions, Polish. Sci. Publ., Warszawa, 1971 | MR | Zbl

[3] Kuratovskii K., Topologiya, t. 1, Mir, M., 1966 | MR

[4] Jacobs K., Measure and integral, Academic Press, N.Y., 1978 | MR

[5] Areas R. F., “Operations induced in function dasses”, Monatsh. Math., 55:I (1951), 1–19 | DOI | MR

[6] Fine N. J., Gillman L., Lambek J., Rings of quotients of rings of functions, Mc Gill Univ. Press, Montreal, 1965 | MR

[7] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[8] Zakharov V. K., “Funktsionalnoe predstavlenie ravnomernogo popolneniya maksimalnogo i schetno-plotnogo modulei chastnykh modulya nepreryvnykh funktsii”, UMN, 35:4 (1980), 187–188 | MR | Zbl

[9] Dashiell F., Hager A., Henriksen M., “Order–Cauchy completions of rings and vector lattices of continuous functions”, Can. J. Math., 32:3 (1980), 657–685 | MR | Zbl

[10] Zakharov V. K., “$cr$-obolochki koltsa nepreryvnykh funktsii”, DAN SSSR, 294:3 (1987), 531–534 | MR | Zbl

[11] Zakharov V. K., “Funktsionalnaya kharakterizatsiya absolyuta, vektornye reshetki funktsii so svoistvom Bera i kvazinormalnykh funktsii i moduli chastnykh nepreryvnykh funktsii”, Tr. Mosk. matem. ob-va, 45, 1982, 68–104

[12] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR

[13] Zakharov V. K., Koldunov A. V., “Sekventsialnyi absolyut i ego kharakterizatsii”, DAN SSSR, 253:2 (1980), 280–284 | MR | Zbl

[14] Zakharov V. K., “Giperstounov absolyut vpolne regulyarnogo prostranstva”, DAN SSSR, 267:2 (1982), 280–283 | MR | Zbl

[15] Zaharov V. K., “Some perfect preimages connected with extensions of the family of continuous functions”, Topology and Applications (Eger, Hungary, 1983), Colloq. Math. Soc. János Bolyai, 41, North-Holland, Amsterdam, 1985, 703–728 | MR

[16] Ionescu Tulcea A. and C., Topics in the theory of lifting, Springer-Verlag, Berlin, 196

[17] Delfosse J.-P., “Caractérizations d'anneaux de fonctions continues”, Ann Soc Sci. Bruxelles. Sér. I, 89:3 (1975), 364–368 | MR | Zbl

[18] Aleksandrov A. D., “Additive functions in abstract spaces, I-III”, Matem. sb., 8 (1940), 303–348 ; 9 (1941), 563–628 ; 13 (1943), 169–238 | MR | MR

[19] Koldunov A. V., “Rasshireniya kantorovskogo tipa i ikh primeneniya”, DAN SSSR, 285:5 (1985), 1050–1053 | MR | Zbl

[20] Zakharov V. K., “Delimost na schetno plotnye idealy i schetnaya ortopolnota modulei”, Matem. zametki, 30:4 (1981), 481–496 | Zbl

[21] Engelking V., Obschaya topologiya, Mir, M., 1986

[22] Zaharov V. K., “On functions connected with sequential absolute, Cantor completion and classical ring of quotients”, Per. Math. Hung, 19:2 (1988), 113–133 | DOI | MR

[23] Zaharov V. K., “Lebesque cover and Lebesque extension”, Studia Sci. Math. Hung, 23 (1988), 343–368 | MR | Zbl

[24] Feis K., Algebra: koltsa, moduli i kategorii, Mir, M., 1977